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Abstract

Deep artificial neural networks (DNNs) trained through
backpropagation provide effective models of the mam-
malian visual system, accurately capturing the hierarchy of
neural responses through primary visual cortex to inferior
temporal cortex (IT) [41, 43]. However, the ability of these
networks to explain representations in higher cortical areas
is relatively lacking and considerably less well researched.
For example, DNNs have been less successful as a model
of the egocentric to allocentric transformation embodied by
circuits in retrosplenial and posterior parietal cortex. We
describe a novel scene perception benchmark inspired by a
hippocampal dependent task, designed to probe the ability
of DNNs to transform scenes viewed from different egocen-
tric perspectives. Using a network architecture inspired by
the connectivity between temporal lobe structures and the
hippocampus, we demonstrate that DNNs trained using a
triplet loss can learn this task. Moreover, by enforcing a
factorized latent space, we can split information propaga-
tion into ”what” and ”where” pathways, which we use to
reconstruct the input. This allows us to beat the state-of-
the-art for unsupervised object segmentation on the CATER
and MOVi-A,B,C benchmarks.

1. Introduction

Recently, it has been shown that neural networks trained
with large datasets can produce coherent scene understand-
ing and are capable of synthesizing novel views [12, 21].
These models are trained on egocentric (self-centred) sen-
sory input and can construct allocentric (world-centred) re-
sponses. In animals, this transformation is governed by
structures along the hierarchy from the visual cortex to the
hippocampal formation, an important model system related
to navigation and memory [20,30]. Notably, the hippocam-
pus is a necessary component of the network supporting
memory and perception of places and events and is one of
the first brain regions compromised during the progression

of Alzheimer’s disease (AD) [3,34]. However, experimental
knowledge regarding the interplay across multiple interact-
ing brain regions is limited and new computational models
are needed to better explain the single-cell responses across
the whole transformation circuit.

Here, we developed a scene recognition model to better
understand the intrinsic computations governing the trans-
formation from egocentric to allocentric reference frames,
which controls successful view synthesis in humans and
other animals. For this, we developed a novel hip-
pocampally dependent task, inspired by the 4-Mountains-
Test [18], which is used in clinics to predict early-onset
Alzheimer’s disease [40]. We tested this task by creating
a biologically realistic model inspired by recent work in
scene perception, in which scenes need to be re-imagined
from several different viewpoints.

The main contributions of our paper are the following:

• We introduce and open-source the allocentric scene
perception (ASP) benchmark for training view synthe-
sis models based on a hippocampally dependent task
which is frequently used to predict AD.

• We show that a biologically realistic neural network
model trained using a triplet loss can accurately distin-
guish between hundreds of scenes across many differ-
ent viewpoints and that it can disentangle object infor-
mation from location information when using a factor-
ized latent space.

• Lastly, we show that by using a reconstruction loss
combined with a pixel-wise decoder we can perform
unsupervised object segmentation, outperforming the
state-of-the-art models on the CATER, MOVi-A,B,C
benchmarks.

2. Related work
2.1. Related work in neuroscience

The study of scene perception in neuroscience was
first systematically explored in behavioural experiments in
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Figure 1. Task design and model architecture
We adapt the 4-Mountains-Test [18] using a simplified task design with one to four objects with circular symmetry and a distal landmark,
depicting a mountain range. We then design a biologically inspired model architecture, for which we take visual cortex responses from
pre-trained CORnet-Z [24] and feed them through perirhinal (PR) and parahippocampal (PH) cortices. The retrosplenial cortex uses an
auxiliary loss to decode head direction. Medial entorhinal (MEC) and lateral entorhinal cortex (LEC) use a disentangled latent space to
separate object from location information. Both are integrated within the hippocampus, with CA3 using a self-attention layer across both
time and space.

1972, by showing for the first time scenes in real-world con-
texts to human participants [2]. These outdoor scenes were
either shown intact or scrambled into six randomly arranged
pieces. It was shown, that the correct identification of cued
objects was drastically lower when the scenes were scram-
bled, indicating that the various parts of a scene are per-
ceived as a whole.

Neural recordings as a response to scenes were first re-
ported in fMRI experiments that showed that the parahip-
pocampal place area (PPA) is involved in perceiving the
visual environment, being more active for outdoor scenes
than single objects [9]. Moreover, activity is reduced when
scrambling the picture into random pieces, indicating that
neurons in PPA are sensitive to the structure of the entire
scene [10]. A second scene-selective region was shown to
be also active during mental imagination of scenes, subse-
quently labelled as the retrosplenial complex (RSC). The
RSC also acts as a hub to integrate sensory, motor and vi-
sual information and is crucial for the transformation from
egocentric to allocentric reference frames [8, 29].

Computational modelling has suggested that the trans-
formation in RSC is governed by head direction cells [5],
which encode the world-centred facing direction of the head
of the animal in the azimuthal plane [32]. When egocen-
tric information from the parietal cortex reaches RSC, the
head direction signal aligns these cells to a common refer-
ence, creating complementary allocentric cell types. These
include object vector cells in the medial entorhinal cor-
tex [19], which are active at spatially confined objects and
boundary vector cells (BVCs) in the subiculum [25] which
encode boundary information in their neuronal activity. The

combined activity of several BVCs giving rise to allocentric
place cells in the hippocampus [1, 5].

In recent years, normative machine-learning approaches
have investigated visual information processing in an ego-
centric reference frame while translating it into an allocen-
tric representation for downstream task performance. Sev-
eral types of these models have been explored, most notably
the Tolman-Eichenbaum-Machine (TEM) [38] and the Spa-
tial Memory Pipeline (SMP) [37]. These normative models
have shown the emergence of allocentric spatial cells in two
separate tasks, using a similar objective function: predict-
ing the next sensory observation. However, both of these
models have not been tested on their abilities to generate
images from novel viewpoints, with TEM only taking in
abstract sensory observations and SMP being employed in
a reinforcement-learning (RL) environment using a spatial
navigation task.

2.2. Related work in computer science

Beyond TEM and SMP, specially designed scene percep-
tion models have tackled the problem of novel view syn-
thesis in several distinct ways. For example, in robotics,
SLAM (Simultaneous localization and mapping) algo-
rithms have been used extensively to represent scenes and
navigate within them, but mainly in a supervised setting on
partially occluded scenes and with a focus on the naviga-
tional abilities of robots, which are endowed with additional
sensors [6].

Neural radiance field (NERF) networks [27, 28, 35] try
to mimic the image synthesis based on real-world physics,
namely the way light is reflected from certain materials and



how these rays end up in the camera sensor. For this, the
neural network must infer all the scene’s physical proper-
ties. The actual reconstruction of an image is done analyt-
ically by a traditional rendering engine, which is typically
not changed during training [36]. The advantage of these
rendering methods lies in the fact that arbitrary resolutions
can be achieved. This is possible as it is not using im-
age or voxel space, but a continuous neural representation,
where coordinates are mapped through a neural network to
their corresponding value - representing colour, occupancy
or material properties [27, 31]. However, a common short-
fall of neural rendering methods is the use of separate neural
networks for each scene, making it hard to gauge the gener-
alization abilities beyond its training scenes.

Traditional scene decomposition methods beyond
NERFs are able to generalize across many scenes, while
still relying on pixel-level information. Most commonly,
the model takes several snapshots of a scene from different
viewpoints which are joined in a latent space. To produce
new views, the latent space is conditioned with a new set of
camera coordinates, reconstructing a novel viewpoint [12].
Recent models have focused on architectures using a slot
structure which disentangles objects within a scene from
each other using self-attention [16, 21, 26]. This allows the
model to learn a fully unsupervised factorized latent space,
which is used to synthesize novel viewpoints and scenes
with different compositionality [21].

3. Task design
None of the above-mentioned biologically inspired mod-

els is equipped to deal with randomly sampled egocentric
sensory observations. Therefore we built a model inspired
by novel view synthesis tasks while considering the par-
ticularities of the hippocampally dependent 4-Mountains-
Test [7, 18]. This test is used in the clinic and requires allo-
centric topographical processing for successful task perfor-
mance, thus is sensitive to hippocampal damage including
that which accumulates during the early stages of AD. The
participant first views an image of a scene with four moun-
tains in it and after a two-second delay is asked to match the
same-scene image out of four images (three distractors and
one target image, see Figure S1 for the same test using our
adapted design). Most importantly, the correct image is the
same scene, seen from a different viewpoint. In contrast,
the distractor images show scenes where the objects are lo-
cated in different allocentric configurations compared to the
original scene.

We simplified the task into its core components by ren-
dering four objects with circular symmetry and a global ref-
erence frame given by the surrounding landscape. Novel
scenes were rendered by randomly changing the world-
centred location of each object, thereby changing the rel-
ative distances of the objects to themselves and the bound-

Figure 2. Variations of task design
We render the task in six different versions (three shown here),
varying both the number of objects within the scenes from 1 to 4 as
well as object colour. We provide segmentation masks, including
objects, backgrounds, and depth maps. We also render each task
without a distal landmark; see Figure S2.

ary. We acquire egocentric sensory observations by ren-
dering the scene across different viewpoints, varying both
azimuth and elevation (Figure 2). We also render views
from the ’inside’ of the environment, simulating the views
of an agent navigating the scene. We render six dif-
ferent versions of this task, by varying both the distal
landmark (with|without) and the colours of the objects
(mix|green|white), while randomly varying the number
of objects within the scene from 1 to 4, with 10% of the
scenes having one object, 20% two, 30% three, and 40%
containing four objects. We sampled different colours, as
traditional scene perception models struggle to differentiate
objects with the same colour or the floor’s colour. During
rendering, we also store segmentation masks and depth pro-
files for each rendered viewpoint (Figure 2 & Figure S2).
Moreover, we store positional information for analysis of
neural activity with respect to different reference frames.
This includes the positions of the objects in an egocentric
reference frame (position ’on the screen’), angular informa-
tion such as azimuth and elevation and the allocentric posi-
tions of each object within the environment (Figure 4).

4. Model architecture
The overall architecture of the model follows known bi-

ological connectivity between visual cortices and the hip-
pocampal formation [3] (Figure 1). To simulate the re-
sponses of the visual cortex, we use a pre-trained convo-



lutional neural network which accurately predicts neural re-
sponses from the macaque visual system [24,33] (CORNet-
Z). This ensures that visual cortex responses do not overfit
the objects, colours and backgrounds we use but generalize
onto natural images. We extract activations from visual cor-
tex area 4 (V4) and inferior temporal (IT) cortex for each
rendered viewpoint.

The information from V4 and IT is then routed through
perirhinal (PR) and parahippocampal (PH) cortices using
either weak or strong connectivity. We implement the
strong connections using a feedforward layer with non-
linearity between two areas, and the weak connections by
adding a residual connection consisting of a linear feedfor-
ward layer that uses the summed input of all previous activa-
tions. Both areas receive information mainly from the ven-
tral visual processing stream, with PR being crucial for the
representation of objects (’what’), while PH predominantly
processes visuospatial information [3]. We implement this
split of information by averaging the visual cortex represen-
tation either across the temporal or spatial axis, which also
enforces disentangled latent representations in subsequent
layers, namely the medial (MEC) and lateral (LEC) entorhi-
nal cortex. MEC receives input which is averaged across
time, therefore being trained to keep spatial information,
while LEC receives input averaged across the spatial dimen-
sion, thereby retaining temporal information. We imple-
ment the hippocampus consisting of CA3 and CA1, with the
former integrating information using a self-attention layer
across different snapshots of the same scene and the lat-
ter integrating both temporal and spatial information using
the outer product, which is fed through a simple feedfor-
ward layer, similar to how TEM integrates information in
the hippocampal formation [39].

To reconstruct the input across novel views, we use a
pixel-wise decoder similar to the one used in SIMONe [21].
For the feedback connections, we use the CA1 layer which
is split into temporal (LEC) and spatial (MEC) information
exactly as the forward pass splits the visual information at
the level of the PR/PH layers. We then sample from LEC
and MEC for each object and pixel and combine them with
periodic positional encodings. These are fed through a 5-
layer MLP decoder using 128 units each, decoding RGB
values for each pixel and object which are combined with
alpha masks to produce the full reconstructed image (Figure
S3).

5. Model optimization

During model training, the model receives egocentric
sensory observations which are transformed into allocentric
representations in the hippocampal formation. The model is
trained by minimizing either a triplet loss on this hippocam-
pal latent space or an L2-reconstruction loss in pixel space

Figure 3. Model performance on scene perception task. Model
performance across layers. For each layer, we calculate the accu-
racy by sampling triplets and quantifying the number of correctly
classified same-scene images. Scenes used for training are de-
picted as grey circles and test scenes as white circles. Most world-
centred responses are measured in late layers, indicating that hip-
pocampal responses are similar for images from the same scene
from different viewpoints.

if the model is tasked to reconstruct the image:

La,p,n =
∑
i

max

(√
(xa

i − xp
i )

2 −
√

(xa
i − xn

i )
2 + α, 0

)
(1)

LMSE =
1

n

∑
n

(xi − x̂i)
2 (2)

where xa,p,n denotes the anchor, positive or negative rep-
resentation from a given layer. If the image layer is used,
these correspond to the original image in pixel space. The
L2-reconstruction loss is calculated between the predicted
reconstruction x̂i and the original image xi on the full-
resolution image. The final loss is summed across the width,
height and timesteps and averaged across batches.

The predictive objective function used in previous mod-
els [37,38] is similar to the reconstruction loss in our model
as the latent space enforces the reconstruction of scenes
from different viewpoints, which can be understood as a
prediction of not only the next observation but all possi-
ble observations. Note that many recent models capable
of novel view synthesis use variational inference [4, 21],
for which it is unclear how individual distribution statistics
would be sampled in biological tissue. We, therefore, do not
sample from the distribution and only use the mean, similar
to how TEM constructs its latent space [38].

6. Results
6.1. Performance on adapted 4-Mountains-Test

We first train our scene perception model to separate be-
tween different scenes, closely linked to the original task in



the 4-Mountains-Test (Figure S1). We use a triplet loss in
which we sample an anchor and a positive image from the
same scene, together with a negative image from a differ-
ent scene. This contrastive loss function allows us to dis-
entangle the hippocampal representation between different
scenes maximally. Model performance is evaluated by ran-
domly sampling triplets (anchor, positive, negative) from
the whole dataset, calculating a cross-correlation matrix and
using the smallest off-diagonal value as the correct image.
If a layer is able to distinguish between scenes, the cor-
relation between the same-scene pair seen from different
viewpoints should be high, while the correlation between
different-scene pairs should be low.

This performance measure allows us to evaluate accu-
racy across all model layers. We observe that the pre-trained
layers and the image itself show performance levels around
chance, with IT performing best (Chance: 33%, IT: 39%,
Figure 3). This means that even though IT is thought to con-
tain object-specific information, it lacks crucial information
to differentiate between scenes containing the same objects
but in different allocentric positions. Nevertheless, these
scenes can be distinguished by late layers in our model,
with CA3 and CA1 showing performance close to 90%
(CA3 89%, CA1 88%), indicating that these layers con-
struct a world-centred representation of the environment,
which is needed for separating the scenes in the adapted
4-Mountains-Test.

6.2. Neural representations within network layers

To quantify the amount of allocentric information con-
tained in each trained layer, we calculate an allocentricity
measure. We define allocentricity as the coefficient of vari-
ation of the activation of each artificial neuron across sev-
eral images of the same scene. A neuron that fires similarly
across images of the same scene from a different viewpoint
has a high allocentric score, while a neuron with a high vari-
ance in its activations for the same stimuli has a low allocen-
tric score. We observe that the hippocampal layers show the
highest allocentricity score (PH, -5.5±0.03; PR, -2.6±0.05;
CA3, 5.0±2.2; CA1, 3.5 ± 1.7), indicating that these layers
have learned to be active for the same scene across different
viewpoints, i.e. have formed an allocentric representation
of the environment (Figure S4).

Having established a differentiation across layers be-
tween egocentric and allocentric information, we sought to
investigate which scene properties are represented in each
layer. We use a linear readout to investigate the separation
of scene properties into low-level features like colours or the
position on the screen, mid-level elements like object size
and high-level features like allocentric position and scene
identity [11]. We observe a trend toward later layers incor-
porating more high-level information. However, the overall
structure is less clear than previously reported in the visual

cortex [17,22,42]. Information regarding the position of ob-
jects in allocentric coordinates can only be effectively read
out from hippocampal layer CA3, while egocentric infor-
mation - object’s position in screen coordinates - is reduced
drastically in the layers beyond MEC, with CA1 seemingly
only retaining allocentric information (Figure S4).

We next sought to investigate individual neural responses
to obtain a fine-grained understanding of the computations
being performed within each layer and, importantly, the
ways in which they relate to known biological data. For
this purpose, we visualize the activity of a subset of neu-
rons within each layer with regard to different reference
frames (Figure 4). We use the egocentric reference frame
for pixel coordinates and the allocentric reference frame
for objects or locations in the environment. To visualize
angular allocentric responses, we visualize the activity us-
ing polar coordinates. We observe allocentric boundary and
place-like activity in the CA1 layers as a function of the
position of an object (Figure 4). This indicates that single
neurons within the model layer are highly activated when-
ever an object is close to the boundary or occupies a certain
allocentric position within the environment, similar to the
boundary and place-like activity observed in biological or-
ganisms [25,30]. These spatial responses also show similar
mechanisms to biological cells, as they tend to remap across
different scenes (S5. We observe these responses as a result
when using only the triplet loss on the CA1 layer. As we
describe further below, we can reconstruct and segment the
image into distinct objects using an additional reconstruc-
tion loss.

6.3. Reconstructing the input through feedback
connections

Having established that the model is able to discern be-
tween novel scenes from arbitrary viewpoints, we next ex-
plored its ability to reconstruct the scene across these view-
points. For this, we added an additional reconstruction
loss in pixel space (Figure S3). Reconstructing the in-
put image is more challenging than just differentiating be-
tween scenes, as complete scene information has to be re-
tained across layers or reinstated from a latent representa-
tion. Therefore, we used a factorized latent space to sample
objects and frame information for each individual pixel and
time point, similar to recent scene perception models [21].
It is assumed that mental imagination (and similarly novel
view synthesis) is guided by a viewpoint-changing signal
likely provided by grid cells in the medial entorhinal cor-
tex, which is combined with object information in the lateral
entorhinal cortex and is then further disentangled into ego-
centric information inside the retrosplenial cortex, which to-
gether with visual cortex establishes the mental image [1].

We first test the reconstruction loss across our six varia-
tions of the task, in which we varied object colour and back-



Figure 4. Single-cell representations across different reference
frames. (Top) Illustration of egocentric and allocentric schemas.
The left side shows two snapshots from the same scene using dif-
ferent viewpoints. The panels to the right depict the egocentric
and allocentric schema for the respective snapshot. Black lines
indicate screen coordinates for the same object in the egocentric
view and world coordinates in the allocentric view. Note that by
definition the allocentric, world-centred schema is the same for
both snapshots. (Bottom) Example representations from neurons
within the network, across each reference frame, showing activity
of two neurons for azimuth, egocentric object position and allo-
centric object position.

ground information (Figure S2). We observe a difference in
the segmentation performance of the model depending on
the object colours used, with the green and white colours
performing worse than the mixed objects, likely because it
is harder to differentiate between objects of the same colour
(Table 1). This has also been noticed in traditional scene
decomposition models, which struggle to disentangle ob-
jects of the same colour and objects having a similar colour
to the background [12]. Interestingly, if we do not enforce
the disentanglement in CA1 via the triplet loss, we can still
see a differentiation between scenes in the late layers of the
model by just training on the reconstruction loss.

6.4. Model performance on CATER and MOVi

Lastly, we evaluated our neural network architecture
on the Compositional Actions and TEmporal Reasoning
(CATER) benchmark [13] as well as the MOVi-A,B,C

Distal landmark No landmark

MSE
Green 27.912 ± 1.289 46.411 ± 2.777

Mix 45.908 ± 4.405 60.159 ± 1.923

White 52.713 ± 4.119 19.167 ± 0.575

FG-ARI
Green 0.137 ± 0.122 0.046 ± 0.010

Mix 0.207 ± 0.148 0.297 ± 0.119

White 0.086 ± 0.035 0.140 ± 0.023

ARI
Green 0.122 ± 0.063 0.067 ± 0.066

Mix 0.383 ± 0.122 0.016 ± 0.016

White 0.136 ± 0.089 0.039 ± 0.033

Table 1. Reconstruction and unsupervised segmentation per-
formance on ASP
We compare the mean-squared error for reconstructing the input
images (MSE), the foreground adjusted rand index (FG-ARI) and
the full adjusted rand index (ARI) across all six variations of our
dataset. We use random seeds to report the mean and standard de-
viation across five model runs. The lowest MSE values and highest
ARI values are displayed in bold.

MONet SIMONe SAVi Ours

CATER 0.412 ± 0.012 0.918 ± 0.036 0.928 ± 0.008 0.939 ± 0.013

MOVi-A - 0.618 ± 0.200 0.820 ± 0.030 0.790 ± 0.017

MOVi-B - 0.307 ± 0.330 0.615 ± 0.030 0.460 ± 0.033

MOVi-C - 0.198 ± 0.005 0.470 ± 0.030 0.318 ± 0.009

Table 2. Segmentation performance across unsupervised mod-
els on CATER and MOVi.
We compare the foreground adjusted rand index (FG-ARI) across
different unsupervised models, quantifying how well the model
segmentation matches the real masks. Note that MONet is a static-
frame model which predicts segmentation for each frame sepa-
rately, likely causing the model to fail to track objects stably. SAVi
is not a fully unsupervised model, using optical flow as a supervi-
sion signal. Baseline scores for MONet, S-IODINE and SIMONe
were taken from [21], SAVi score was taken from [23]. To obtain
the final model performance, we first train a model for 200000
steps with a fixed learning rate and subsequently present the effi-
cacy of five models initialized with these weights and trained uti-
lizing an annealing learning rate.

datasets [14]. These datasets consist of three to eleven ran-
domly placed objects, with a fixed camera location but mov-
ing objects. We use the modified CATER dataset from [21],
which includes segmentation masks for each object in order
to explore the model’s ability to perform object segmenta-
tion fully unsupervised. We use the same model architec-
ture for higher-level cortices as described above, but replace
the pre-trained visual representation with four convolutional
layers, using a kernel size of four and a stride of 2. We ad-
ditionally increase the number of units in the pixel-wise de-
coder from 128 to 512 and train the model for 300000 steps
using a batch size of 1. As shown in Figure 5, our model
is able to reconstruct the input frames and segment the ob-



Figure 5. Model performance for reconstructing and segmenting novel scenes. (Left) Model performance across three scenes taken
from the test set of CATER. The top two rows show model input and reconstruction of input, the bottom two rows show the true segmenta-
tion of objects within the scene and the predicted segmentation of the model. (Right) Reconstruction and segmentation performance across
time for Scene 3. The top left object (red in the original input) moves up and to the left of the frame. The model is able to accurately
segment and track the object across all 16 frames (4 intermediate frames shown here), albeit classifying the shadow as part of the object.

jects on the CATER dataset, by using only a reconstruction
loss. We compare our model against other unsupervised
segmentation models like MONet [4], S-IODINE [15], SI-
MONe [21] and SAVi [23] (see Table 2). We achieve com-
parable or better performance to the best baseline models
on CATER (FG-ARI: SAVi 0.928 ± 0.008; Ours 0.939 ±
0.013) while outperforming all unsupervised models (SAVi
is trained on optical flow information). Based on visual ex-
amination of background segmentation in [21], we note that
the full ARI score (taking into account both background and
foreground) of our model likely outperforms many of the
baseline models, which do not report the full score (Ours,
FG-ARI: 0.939 ± 0.013, ARI: 0.825 ± 0.04). For the more
challenging MOVi datasets, we further increase the num-
ber of units in the decoding layer to 1024 and train the
model for 400000 steps using a batch size of 1. We ob-
serve a decline in performance with increasing scene com-
plexity (FG-ARI, MOVi-A 0.790, MOVi-B 0.460, MOVi-
C 0.318), while still outperforming SIMONe on all three
datasets. Taken together, these comparisons show that our
biologically inspired model is not only able to reconstruct

images from our novel benchmark but shows comparable
performance to state-of-the-art unsupervised scene segmen-
tation models.

7. Discussion

Here we explored the neural representations of an ar-
tificial neural network which was trained to perform al-
locentric topographical processing, similar to how the
Four-Mountains-Test is used to predict the early onset of
Alzheimer’s disease. The model uses visual representations
from V4 and IT and uses higher-level areas like the entorhi-
nal and hippocampus to successfully differentiate between
scenes from different viewpoints. We show that this bio-
logically inspired model can discern between hundreds of
scenes and generalize beyond its training set. Moreover, it
is able to reconstruct the visual input through a factorized
latent space [21, 24], disentangling object from spatial in-
formation.

Our model is able to perform novel view synthesis by
imagining scenes from different viewpoints (4MT) or dif-



ferent moments in time (CATER & MOVi) and can seg-
ment objects on par with recent state-of-the-art models.
One shortcoming of this approach is the relatively small
model size which likely prevents it from performing well
on more challenging real-world datasets like MOVi-C,D,E
or COCO. More powerful visual representations might help
for these datasets, for which our visual cortex can be eas-
ily replaced with features from models that have a higher
similarity to visual cortices [33].

In the future, we want to further explore the difference in
neural representations across the objective functions used.
We observed that spatially modulated cells also arise in the
model using a reconstruction loss, but only in the tempo-
rally averaged pathway (MEC) and only in a small subset
of neurons. This likely arises from the use of LEC & MEC
as a bottleneck, forcing the model to retain scene informa-
tion in order to fully reconstruct the image, which is not
needed for the disentangling of the latent representation.
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Figure S1. Original task design, used to detect Alzheimer’s disease
In the 4-Mountains-Test [18], the participant first sees the image on the left and after a two-second delay is shown the images on the right,
from which they need to choose the image which shows the same scene but from a different viewpoint. In all other images, the allocentric
position of the mountains is changed (distractor images). The correct scene in this example is the lower right image.



Figure S2. Variations of allocentric scene perception (ASP) task
We render six different variations of our dataset, by changing the colours of the object as well as the global reference. The colours are
chosen to test model performance for segmenting objects with the same colour, objects which share the colour of the floor or are maximally
different than the floor and objects which are already distinguishable by colour alone. We also vary the use of distal landmarks (global
reference) to test model segmentation without additional cues regarding distances from boundaries in allocentric space.

Figure S3. Model architecture for reconstructing inputs
When the model is tasked to reconstruct the input as well as segment objects, we use a pixel-wise decoder which takes input signals
from MEC, LEC and CA3. MEC and LEC information is acquired by splitting the information into two pathways, one of which takes
averaged time (T) information, thereby carrying information about space (MEC). In contrast, the other pathway takes averaged space (S)
information, thereby retaining information about time (LEC). The MLP outputs four channels, where three are used for reconstructing the
inputs, while the fourth is used for constructing segmentation masks.



Figure S4. Allocentricity score and layer readout
(Left) We show the allocentricity score across layers, which measures the activity of neurons across different views within a scene, defined
as the coefficient of variation of the activation of each artificial neuron across several images of the same scene. High values indicate that
the neurons within this layer have similar activity profiles for images from the same scene independent of the viewpoint from where it was
taken. Most world-centred responses are measured in late layers, indicating that hippocampal responses are similar for images from the
same scene from different viewpoints. (Right) We use a linear readout across layers to investigate the information contained within them.
Performance is normalized via z-scoring across layers.

Figure S5. Lesioning experiments and remapping across scenes
(Left) Performance for differentiating scenes across the ratio of lesioned cells. (Right) Responses of two neurons across three different
scenes, showing spatial selectivity remaps with scene identity.
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