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Hippocampal spatio-predictive cognitive 
maps adaptively guide reward generalization

Mona M. Garvert    1,2,3 , Tankred Saanum4, Eric Schulz4, 
Nicolas W. Schuck    2,3,5 & Christian F. Doeller    1,6,7 

The brain forms cognitive maps of relational knowledge—an organizing 
principle thought to underlie our ability to generalize and make inferences. 
However, how can a relevant map be selected in situations where a stimulus 
is embedded in multiple relational structures? Here, we find that both spatial 
and predictive cognitive maps influence generalization in a choice task, 
where spatial location determines reward magnitude. Mirroring behavior, 
the hippocampus not only builds a map of spatial relationships but also 
encodes the experienced transition structure. As the task progresses, 
participants’ choices become more influenced by spatial relationships, 
reflected in a strengthening of the spatial map and a weakening of the 
predictive map. This change is driven by orbitofrontal cortex, which 
represents the degree to which an outcome is consistent with the spatial 
rather than the predictive map and updates hippocampal representations 
accordingly. Taken together, this demonstrates how hippocampal cognitive 
maps are used and updated flexibly for inference.

As humans, we live in complex, ever-changing environments that often 
require us to select appropriate behaviors in situations never faced 
before. Luckily, our environment is replete with statistical structure 
and our experiences are rarely isolated events1. This allows us to predict 
outcomes that were never experienced directly by generalizing infor-
mation acquired about one state of the environment to related ones2. 
Indeed, humans and other animals generalize across spatially or per-
ceptually similar stimuli3–5 as well as across stimuli forming associative 
structures such as those acquired in a sensory preconditioning task6,7. 
Generalization also occurs in reinforcement learning tasks where the 
same latent state determines the outcome associated with choosing 
different stimuli8,9.

For generalization to be possible, an appropriate neural represen-
tation of stimulus relationships is required. Many studies have shown 
that spatial relationships, such as distances between landmarks, are 
represented in a hippocampal cognitive map10,11, which enables flexible 

goal-directed behavior beyond simple stimulus-response learning12. 
More recently, it has been suggested that the same organizing principle 
might also underlie the representation of relationships between nons-
patial states such as perceptual13–17 or temporal relationships between 
stimuli18–21, or associative links between objects22–25. Interestingly, cogni-
tive maps even form incidentally and in the absence of conscious aware-
ness22. This suggests that the hippocampus automatically extracts the 
embedding of a stimulus in relational structures26,27, even for stimulus 
features that are not directly task relevant28. In spatial navigation, stimuli 
can even be embedded in maps simultaneously, e.g., a policy-dependent 
predictive map reflecting the specific order in which stimuli are experi-
enced during spatial navigation, as well as a policy-independent spatial 
(or Euclidean) map, that can be inferred from the subjective experience 
if one has prior knowledge about the topology of space.

If stimuli are part of several relational structures, this raises the 
question how the representation that is most beneficial for reward 
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replacement error (see Fig. 1c for a detailed description of all behavioral 
and fMRI measures). The session terminated when the replacement 
error averaged across all monsters in a block was below three virtual 
meters (vm; 3 vm corresponds to 10% of the arena’s diameter) and at 
least five and at most ten blocks had been completed. At the end of the 
learning phase, participants could position the stimuli in the correct 
location (Extended Data Fig. 2a). Before and after each imaging session 
on days 2 and 3, participants also performed one block of the object 
location memory task without feedback. The replacement error did 
not differ between sessions (Fig. 2b). In a spatial arena task at the end of 
the 3-day study, participants also accurately reproduced the stimulus 
arrangement when instructed to drag-and-drop stimuli imagining a 
top-down view on the spatial arena (Fig. 1g). Participants thus learned 
the spatial arrangement of the stimuli well.

In a choice task performed in the MRI scanner on day 3, partici-
pants were presented with two stimuli simultaneously and instructed 
to select the one that was associated with a higher reward (Fig. 1f). 
Participants were told that the reward magnitude was determined 
by the stimulus location in space (Fig. 1a). Participants could thus 
combine their knowledge about the stimulus relationships with pre-
viously experienced reward contingencies to infer the rewards of 
stimuli they had not yet experienced. To decorrelate spatial distance 
and reward relationships, we introduced two contexts with different 
reward distributions (Fig. 1a). Participants performed alternating 
choice blocks for each context, with the context signaled by the 
background color. Participants learned to perform the task rapidly 
(Fig. 2c) and their choices were a function of the difference in value 
between the stimuli presented on the left and the right on the screen in 
both contexts (context 1: t(47) = 10.0, P < 0.001, context 2: t(47) = 12.1, 
P < 0.001; Fig. 2d).

To test whether participants could use their knowledge about 
the stimulus relationships to generalize, two stimuli per context were 
never presented during the choice task (‘inference stimuli’; Fig. 1a,b). 
At the end of the study, participants correctly inferred which of the 
two inference stimuli had a higher value in each context (repeated 
measures analysis of variance (ANOVA), F(1, 46) = 21.4, P < 0.001;  
Fig. 1g and Fig. 2e), demonstrating that participants exploited knowl-
edge about stimulus relationships to infer unseen values. The error 
between the true inference values and the value ratings was larger  
in participants where the error between the true z-scored spatial 
distances and the z-scored distances in the arena task was larger 
(‘Map reproduction error’, r = 0.37, P = 0.01, robust regression 
t(45) = 2.31, P = 0.03; Fig. 2f). After the choice task, participants took 

maximization and generalization can be selected29. One region impli-
cated in this process is the orbitofrontal cortex (OFC), known to repre-
sent task states in situations where these are not directly observable23,30. 
Little is known, however, about how information in the OFC about the 
task-relevance of different maps relates to corresponding changes in 
the representation of cognitive maps in the hippocampus31,32.

Here, we combined virtual reality with computational modeling 
and functional magnetic resonance imaging (fMRI) to show that par-
ticipants represent spatial as well as predictive stimulus relationships 
in hippocampal maps. The degree to which each dimension was rep-
resented neurally determined the degree to which it was used for gen-
eralization in a subsequent choice task, even though only the spatial 
location determined the magnitude of rewards. Notably, the neural 
representation of each map and its influence on choice changed over 
the course of the choice task through an OFC signal reflecting the rela-
tive accuracy of the predicted outcome based on the spatial as opposed 
to the predictive map. Together, our results provide a computational 
and neural mechanism for the representation and adaptive selection 
of hippocampal cognitive maps during choice.

Results
Participants used relational knowledge to generalize value
To examine how humans use information about stimulus relation-
ships for generalization and inference, 48 healthy human participants 
(mean age 26.8 ± 3.8 years, 20−34 years old, 27 male) took part in a 
3-day experiment that involved learning to locate 12 monster stimuli 
in a virtual arena, followed by a choice task in which spatial knowledge 
could be used for predicting rewards (Fig. 1a).

On day 1, participants performed several exploration blocks in 
which they were instructed to remember the location of the stimuli 
while freely navigating in the arena (Fig. 1c,d). Stimuli became visible 
when they were approached, but were otherwise invisible. Explora-
tion policies differed substantially between individuals (Fig. 2a and 
Extended Data Fig. 1). As a result, participants experienced different 
predictive relations between the monsters, which could also deviate 
from the spatial distances between stimuli. For example, some partici-
pants visited stimuli in a stereotyped order, whereas others navigated 
mostly around the border of the arena or systematically scanned the 
environment from top to bottom (Fig. 2a).

After each exploration block, participants performed an object 
location memory task. Participants were teleported to a random loca-
tion in the arena and instructed to navigate to the hidden location 
of a presented stimulus. Feedback indicated the magnitude of the 

Fig. 1 | Experimental design. a, Spatial position of monsters during the 
navigation tasks and value distribution associated with the monsters in context 1 
and 2 in the choice task. Darker colors indicate higher values (range: 0–100). 
Numbered circles indicate the location of inference stimuli that were never 
presented during the choice task. b, True values of the four inference stimuli. c, 
Tasks performed on the three subsequent days and glossary depicting the phase 
during which each behavioural and fMRI measure were computed. The study 
took place over three subsequent days and consisted of tasks where participants 
navigated around a virtual arena (VR, outside the scanner), a picture-viewing 
task (PVT, in the scanner), a choice task (in the scanner), as well as computer-
based tests (outside the scanner). Arrows point to the measures extracted during 
each episode. Green arrows indicate behavioral measures, and purple arrows 
indicate fMRI measures. d, Exploration and object location memory tasks. In 
the exploration task (left), participants navigated around a virtual arena with 
button presses corresponding to forward, backward, right and left movements. 
Monsters appeared when they were approached, but were never all visible at 
the same time. In the object location memory task (right), participants were 
instructed to navigate to the position of a cued monster (each monster cued once 
in each block). Feedback indicated how far away the positioned stimulus was 
from the correct stimulus location. On day 1, participants performed between 
five and ten blocks (depending on performance) of the exploration and the 
object location memory task in alternation. On subsequent days, only one block 

of the object location memory task was performed before and after scanning 
without feedback. e, Picture-viewing task performed in the scanner. Participants 
were presented with monsters one after another. When two monsters appeared, 
participants were instructed to choose the monster that was closer in space to the 
preceding monster (map symbol) or the monster that was more similar in value 
to the preceding monster (coins symbol, day 3 only). On day 2, the background 
color was irrelevant for the task, on day 3 it indicated the context determining 
the stimulus values. f, Choice task performed in the scanner. Participants were 
instructed to maximize accumulated points by choosing the monster associated 
with a higher reward on each trial. Participants were told that the monsters had 
different values in two different contexts, and that the relevant context was 
signaled by the background color. The values associated with each monster in the 
two contexts were learned in alternation, with ten blocks of context 1 followed by 
ten blocks of context 2, and so forth. g, At the end of day 3, four post-tests were 
performed. Participants indicated for each monster how many points they would 
receive in each of the two contexts and how much they liked each monster. They 
were then asked to arrange the monsters in terms of their similarity in a circle in 
such a way that monsters that were considered similar were positioned near each 
other (Arena task 1). Lastly, participants were instructed to imagine a top-down 
view of the arena they had navigated around and to place the monsters in the 
corresponding location (Arena task 2).
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less time for deliberation when navigating to a remembered stimulus 
location, perhaps pointing to a consolidation of the spatial map during 
value learning (Extended Data Fig. 3). Participants also positioned stim-
uli associated with high values closer to their true location (Extended 
Data Fig. 2). This suggests that participants’ memory expression was 
more accurate around valuable stimuli.

Spatial and predictive relationships guide generalization
Stimulus locations were learned during free exploration, which differed 
substantially between participants (Fig. 2a, Extended Data Fig. 1 and 
Extended Data Fig. 4e). Intelligent agents should keep track of both 

the spatial distance as well as the predictive relationships between 
stimuli experienced during navigation, since either feature may become 
relevant for generalization. We therefore reasoned that the brain may 
extract two relational maps: one reflecting spatial distances between 
stimuli and the other reflecting predictive relationships.

To test explicitly to what extent generalization was guided by the 
spatial or predictive maps—or a combination of both—we fitted Gauss-
ian process (GP) models to participants’ choices (Online Methods). The 
GP predicts rewards for a new stimulus based on the rewards associated 
with all other stimuli, weighted by their similarity to the new stimulus. 
Since the similarity function determines how the GP generalizes, we 
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Fig. 2 | Behavioral results. a, Trajectories of three example participants during 
the exploration phase on day 1. Purple dots indicate the stimulus locations 
and black lines the participant trajectories. See all participants' trajectories 
in Extended Data Fig. 1. b, Replacement error for days 2 and 3, before (pre) 
and after (post) the scanning session. The replacement error was defined as 
the Euclidean distance between the true location and the drop location. The 
replacement error did not differ significantly between sessions (no significant 
main effect or interaction for session and condition (pre/post) in a two-way 
repeated measures ANOVA, N = 48, all P > 0.15), see stimulus positioning at 
the end of the learning phase on day 1 in Extended Data Fig. 2. c, Percentage 
correct of choices over the course of the choice task. Trials are divided into ten 
sub-blocks of ten trials each with a constant context (N = 48). d, Probability of 
choosing the right option as a function of the difference in value between the 

right and the left option, separately for each context. e, Value rating for the 
inference stimuli at the end of the study. Value ratings were significantly different 
between high- and low-value objects (F(1, 46) = 21.4, P < 0.0001), but not between 
contexts (F(1, 46) = 0.15, P = 0.70, two-way repeated measures ANOVA, N = 47). 
f, Correlation between the map reproduction error (root-mean-square error 
between the true z-scored spatial distances and the z-scored distances in the 
arena task) and the root-mean-square error for the inference ratings (Pearson’s 
r = 0.37, P = 0.01, CI (0.08, 0.59), N = 47). Data in b, c and e are plotted as group-
level whisker-boxplots (center line, median; box, 25th to 75th percentiles; 
whiskers, most extreme datapoints the algorithm considers to be not outliers; 
crosses, outliers). Error bars in d denote s.e.m. Circles and transparent lines in 
b–f represent individual participant data, ***P < 0.001; NS, not significant. All 
statistical tests were two-sided.
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can express hypotheses about what cognitive map participants use 
by pairing GPs with similarities implied by spatial or predictive maps.

Specifically, generalizing using a spatial cognitive map corre-
sponds to pairing the GP with a similarity function that decays with 
Euclidean distance. Generalizing using a predictive cognitive map 
corresponds to pairing the GP with a similarity function that decays 
with predictive relations. We constructed these predictive similarities 
based on individual participants’ navigation runs from day 1: using 
their stimulus visitation history from the exploration phase, we com-
puted each participants’ successor representation33, reflecting the 
expected number of visits of any stimulus s′ given a starting stimulus 
s. This can be transformed into a probability that two stimuli are visited 
in direct succession (Online Methods). We then computed predictive 
similarities based on the diffusion distance5 implied by these transition 
probabilities.

Finally, kernel functions can be added or multiplied together to 
model function learning where generalization may be guided by a 
combination of multiple similarity functions34,35. As such, the hypoth-
esis that both the spatial and predictive maps guide generalization 
together is captured in the spatio-predictive GP, which uses the additive 
composition of the spatial and the predictive similarities to generalize.

To test which map best explained how participants generalized 
rewards, we created three GP models that generalized based on either 
spatial, predictive or spatio-predictive relationships between mon-
sters. Then, for each trial, we made each GP model predict the reward 
of both monsters, conditioning the GPs on all monster-reward pairs 
observed in the relevant context up to that point. We also compared 
these models with a ‘mean tracker’ model that assumes participants 
only learn about directly experienced stimulus-reward associations, 
without generalization (Online Methods).

To fit our models to participants’ choices, we entered the pre-
dicted difference in reward between the two presented monsters 
in a mixed-effect logistic regression model with random slopes per 
participant36, and determined the maximum likelihood hyperparam-
eters using grid search. We then computed model frequency based on 
the leave-one-trial-out cross-validated log-likelihood for each model 
(Online Methods)37.

The model generalizing based on the compositional, 
spatio-predictive similarities explained participants’ choices best 

(model frequency = 0.681, s.d. = 0.065, XP > 0.999; Fig. 3b and see 
Extended Data Fig. 4 for full modeling results). This model per-
formed substantially better than the predictive model (model fre-
quency = 0.08, s.d. = 0.038), the spatial model (model frequency = 0.23, 
s.d. = 0.059) and the mean tracker (model frequency = 0.005, 
s.d. = 0.01). The model also reproduced the difference in value rat-
ing for the high- and the low-inference stimuli (repeated measures 
ANOVA, F(1, 47) = 2,602.3, P < 0.001; Fig. 3c). Across participants, the 
root-mean-square error between true values and values predicted by the 
winning model was highly correlated with the root-mean-square error 
between the true values and the value ratings provided by participants 
(r = 0.85, P < 0.001, robust regression t(45) = 11.94, P < 0.0001; Fig. 3d).

Furthermore, participants’ value ratings for the inference stimuli 
at the end of the study were also predicted best by a spatio-predictive 
model (Fig. 2e). This demonstrates that behavior in two independent 
parts of the study, the choice task and the inference test, was influenced 
by both spatial and predictive knowledge about stimulus relationships. 
Notably, the value ratings for the stimuli whose values could be sampled 
directly were best predicted by the mean tracker model, rather than 
the spatio-predictive GP (Extended Data Fig. 4a). This suggests that 
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participants evoked specific memories of stimulus-reward associa-
tions where possible, but relied on the spatio-predictive map when 
they needed to construct values of stimuli which were not experienced 
directly (Extended Data Fig. 4c).

We estimated effect sizes for the spatial and the predictive com-
ponent as the participant-specific random effects in a model where 
the spatial and predictive regressors competed to explain variance 
in participants’ choices. Spatial weights were defined as the relative 
contribution of the spatial compared with the predictive regressor. 
Both the spatial and the predictive relationships had nonzero influ-
ence on choice behavior and the effect sizes were negatively correlated 
(Fig. 3f, r = − 0.45, P = 0.001, robust regression t(46) = −3.23, P = 0.002), 
suggesting that participants tended to rely predominantly on one of 
the two maps for guiding choice. Consistent with the fact that the 
spatial, but not the predictive relationships, were relevant for gener-
alization, participants whose choices were driven more by the spatial 
relationships compared with the predictive ones performed better 
in the inference test (Fig. 3g, r = −0.43, P = 0.003, robust regression 
t(45) = −2.82, P = 0.007).

Hippocampal spatial and predictive maps guide choice
Our modeling results suggest that participants generalized values 
based on both the spatial and predictive relationships experienced 
during exploration. To investigate the neural representation of these 
relationships, we scanned participants before the choice task on day 2 
and after the choice task on day 3 using fMRI. During these imaging ses-
sions, stimuli were presented in random order on the two background 
colors (Fig. 2e). Once after each stimulus on each background color 
(that is, in 24 of 144 trials), participants were presented with two stimuli 
and instructed to report which one was either closer in space or more 
similar in value in the given context (on day 3 only) to the preceding 
stimulus. Participants performed this task well above chance (correct 

performance on day 2: 81 ± 10% (distance judgment); day 3: 78 ± 12% 
(distance judgment) and 68 ± 14% (value judgment), mean ± s.d., all 
P < 0.001) and choices were driven by spatial distances and value dif-
ferences, respectively, and not by the absolute value associated with 
a monster (Extended Data Fig. 5).

We used fMRI adaptation38,39 to investigate the representational 
similarity of the 12 stimuli. This technique uses the amount of sup-
pression or enhancement observed when two stimuli are presented in 
direct succession as a proxy for the similarity of the underlying neural 
representations. We hypothesized that, in regions encoding a cogni-
tive map of the stimulus relationships, the size of the cross-stimulus 
adaptation effect should scale with spatial or predictive relations 
between stimuli. We tested for adaptation effects by including spatial 
and predictive distances as parametric modulators in the same general 
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cluster survives correction for multiple comparisons. b, Correlation between the 
spatial cross-stimulus enhancement effect extracted from the right hippocampal 
ROI depicted in a (thresholded at P < 0.001) and the spatial effects governing 
decisions in the choice task (Pearson’s r = 0.37, P = 0.01, CI (0.09, 0.59), N = 48). 
c, Correlation between the spatial cross-stimulus enhancement effect extracted 
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the right hippocampal ROI depicted in a and the root-mean-square error 
between ratings for the inference stimuli and their true value (Pearson’s 
r = 0.06, P = 0.68, CI (−0.23, 0.34], N = 48). f, Whole-brain analysis where spatial 
effects (top) and predictive effects (bottom) describing generalization during 
choice are entered as second-level covariates for the spatial and predictive 
cross-stimulus enhancement effects. Both analyses reveal significant clusters in 
the hippocampal formation. g, Whole-brain analysis where the inference error 
is entered as second-level covariate for the spatial and predictive cross-stimulus 
enhancement effects. This analysis reveals a negative effect for the spatial map 
and a positive effect for the predictive map in the hippocampal formation.  
h, Mediation path diagram for inference error as predicted by the hippocampal 
map and spatial effects. Statistical inference was done using bootstrapping 
with 10,000 bootsamples. a: 0.3 ± 0.1, P = 0.01, b: − 3.4 ± 0.9, P = 0.004, 
c': − 1.1 ± 0.4, P = 0.02, ab: − 0.9 ± 0.4, P = 0.0004. a, f and g are thresholded at 
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All statistical tests were two-sided.
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linear model (GLM). Based on previous work, we expected the hip-
pocampal formation to be a candidate region for representing such 
cognitive maps10,13,17,22,40. All subsequent analyses are therefore reported 
at a cluster-defining threshold of P < 0.001, combined with peak-level 
family-wise error (FWE) small-volume correction (SVC) at P < 0.05. 
For the SVC procedure, we used a mask comprising hippocampus, 
entorhinal cortex, and subiculum (see mask used for small-volume 
correction in Extended Data Fig. 6a).

We found a significant cross-stimulus enhancement effect that 
scaled with spatial distance in session 3 (after the choice task) in the right 
hippocampal formation (Fig. 4a, peak t(47) = 3.86, P = 0.045, (24, −28, 
−16)). A cluster in the left hippocampal formation trended in the same 
direction (peak t(47) = 3.63, P = 0.08, (−12, −36 −6)). No voxels survived 
the conservative correction procedure for the predictive relations. 
One reason for this could be that different participants represented 
the spatial and predictive aspects to different degrees, with a stronger 
representation of the spatial map across the group as a whole. Indeed, 
in most participants (44 out of 48), the spatial component contributed 
more to generalization during choice than the predictive component 
(t(47) = 9.9, P < 0.001). We therefore investigated whether the strength 
of the neural representation predicted the degree to which an individual 
was influenced by either spatial or predictive relations in the choice task.

To test this, we extracted parameter estimates for the spatial and 
predictive maps from the region of interest (ROI) in the right hip-
pocampal formation showing a cross-stimulus enhancement effect that 
scaled with spatial distance (masking threshold P < 0.001; Fig. 4a). A 
significant correlation with the spatial and predictive effects on choice 
behavior confirmed a relationship between the neural representation 
of the respective maps in this region and generalization behavior 
(spatial: r = 0.37, P = 0.01, robust regression: t(46) = 2.66, P = 0.01, pre-
dictive: r = 0.40, P = 0.005, robust regression: t(46) = 2.90, P = 0.006; 
Fig.  4b,d). We also found that the representation of the spatial, but 
not the predictive map in this ROI can be linked to performance in the 
later, independent inference test that depended on spatial knowledge 
(spatial: r = − 0.44, P = 0.002, robust regression t(45) = −3.1, P = 0.003; 
predictive: r = 0.06, P = 0.7, robust regression t(45) = 0.70, P = 0.49; 
Fig. 4c,e) as well as the replacement error in the object location mem-
ory task (Extended Data Fig. 7, spatial: r = −0.32, P = 0.03, predictive: 
r = 0.06, P = 0.69). Neither the formation of the spatial nor the predic-
tive map was related to navigational strategies participants exhibited 
(Extended Data Fig. 7).

To investigate whether the relationship between spatial and pre-
dictive influences on behavior and neural map representation is spe-
cific to the hippocampus, we included spatial and predictive effects 
on choice behavior as covariates on the second level in the GLM that 
was used to identify spatial and predictive cross-stimulus enhance-
ment effects. For both spatial and predictive maps, we found precisely 
localized clusters in the hippocampal formation, where the effects 
were larger the stronger the respective map’s influence on behavior 
(spatial: peak t(47) = 4.45, P = 0.009, [22, −28, −18], predictive: peak t
(47) = 4.19, P = 0.02, [26, −20, −28], t(47) = 4.14, P = 0.02, [28, −14, −16] 
and peak t(47) = 3.91, P = 0.04, [−28, −16, −13]; Fig. 4f). Furthermore, 
the representation of the spatial map in the hippocampus was stronger 
and the representation of the predictive map was weaker in individuals 
who made smaller inference errors (spatial: peak t(47) = 5.08, P = 0.00
2, [32, −14, −25] and peak t(47) = 4.95, P = 0.002, [−32, −14, −22], predic-
tive: peak t(47) = 4.53, P = 0.007, [−32, −12, −2]); Fig. 4g). This suggests 
that participants who represented the spatial map more strongly in the 
hippocampal formation also generalized more according to spatial 
distances in the choice task and performed better in the inference task, 
with the reverse pattern for the predictive relationships.

To test whether the hippocampal spatial map formally mediated 
the impact of the neural representation on inference performance, we 
related the parameter estimates for the spatial map extracted from the 
right hippocampal ROI to both the spatial effects as estimated from 

behavior in the choice task as well as the inference performance using 
single-level mediation41,42. The path model jointly tests the relationship 
between the neural representation of the spatial map and the degree 
to which spatial relationships influenced generalization in the choice 
task (path a), the relationship between spatial weights in the choice 
task and inference performance (path b), and a formal mediation effect 
(path ab) that indicates that each explains a part of the inference per-
formance effect while controlling for effects attributable to the other 
mediator. All three effects were significant (path a: 0.3 ± 0.1, P = 0.01, 
b: − 3.4 ± 0.9, P = 0.004, c’: − 1.1 ± 0.4, P = 0.02, c: − 1.9 ± 0.6, P < 0.001, 
ab: −0.9 ± 0.4, P = 0.0003; Fig. 4h). This confirms that the representa-
tion of a hippocampal cognitive map guides spatial generalization and 
inference during the choice task and the inference test. Furthermore, 
despite the fact that the spatial and the predictive kernel were corre-
lated in most participants (average Pearson’s r = 0.58 ± 0.12), the neural 
effect as well as the degree to which behavior was influenced by either 
component could not be explained by a correlation between spatial 
and predictive kernels (Extended Data Fig. 8). Also the variance infla-
tion factor as an index for the collinearity between GLM regressors for 
spatial and predictive kernels across participants was not related to the 
spatial or predictive fMRI effects (Extended Data Fig. 9).

Representations of cognitive maps adapt to the task demands
We hypothesized that individuals adjust the degree to which they rely 
on one over the other dimension for guiding choice depending on the 
observed outcome contingencies. Indeed, a logistic function fitted to 
how individual weights changed over trials showed that, in most partici-
pants, the predictive component explained generalization behavior in 
the choice task better initially but, as the choice task progressed, spatial 
knowledge became more influential (Fig. 5a). The slope of this logistic 
function was steeper in participants who performed better in the choice 
task (Fig. 5a) as well as in the inference test (r = −0.44, P = 0.002, robust 
regression t(45) = 2.89, P = 0.006; Fig. 5b).

We reasoned that this might reflect changes in the representation 
of the neural map over the course of the choice task. If this is the case, 
then participants who showed a larger increase in the contribution 
of spatial knowledge on choices should also show a larger increase in 
the neural representation of the spatial map from day 2 (before the 
choice task) to day 3 (after the choice task). To test this, we extracted 
parameter estimates from the same ROI we used for the analyses in Fig. 
4 for sessions 2 and 3 and correlated the difference with the slope of the 
logistic function. Indeed, participants whose behavior was character-
ized by increases in the reliance on the spatial map during choice also 
showed a larger increase in the neural representation of the spatial 
map (r = − 0.44, P = 0.002, robust regression t(45) = 2.58, P = 0.01; Fig. 
5c). In the same region, the parameter estimate for the predictive map 
decreased significantly across participants (t(47) = − 2.1, P = 0.04) and 
the change in the spatial map representation was negatively corre-
lated with the change in the predictive map representation (r = − 0.62, 
P < 0.001, robust regression t(45) = − 6.83, P < 0.0001; Fig. 5d), suggest-
ing that, in participants where the spatial map representation became 
stronger the predictive map representation became weaker.

We reasoned that this change in representation might be driven 
by a neural signal reflecting the degree to which either map was task 
relevant. To test this hypothesis, we set up a GLM that included a para-
metric regressor that reflected the difference in the degree to which the 
spatial map influenced choice from one trial to the next (weight update 
signal). This identified a region in the left hippocampus (t(47) = 4.14, 
P = 0.02, [ −18, −32, −18]; Fig. 5e).

If this neural weight update signal led to an increase in the neural 
representation of the relevant map, then participants with stronger 
hippocampal weight updating signals should display a larger change 
in hippocampal representation of the spatial map from day 2 to day 3.  
To test where the spatial weight updating signal correlated with a 
change in the spatial map representation, we looked for changes in the 
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spatial map representation from session 2 to session 3 across the whole 
brain, and included the parameter estimates extracted from the hip-
pocampal ROI reflecting the spatial weight update as a covariate. This 
analysis revealed a significant positive effect in the left hippocampal 
formation (P = 0.018, t(47) = 4.21, [18, −14, −25]; Fig. 5g), suggesting that 
participants whose hippocampus tracked the spatial weight updates 
during the choice task also updated the representation of the spatial 
map in the hippocampus.

The changes in the composition of the hippocampal map likely 
reflect a representation learning process that was driven by the experi-
enced reward contingencies in the choice task. We generated trial-wise 
reward prediction errors based on the compositional map and used 
this measure as a parametric modulator at feedback time. We rea-
soned that, if there is a relationship between the reward prediction 

error and the spatial updating signal, then fMRI activity should covary 
more with reward prediction error in participants whose hippocam-
pal weight updating signal was stronger, and therefore included the 
spatial weight updating parameter estimate extracted from the hip-
pocampal ROI as a covariate. Based on previous work in different spe-
cies43,44, we hypothesized that the striatum and the OFC might play 
a particular role in tracking reward prediction errors and updating 
cognitive maps, respectively, and therefore used anatomically defined 
caudate and orbitofrontal cortex masks for small-volume correction 
(Extended Data Fig. 6b,c). Indeed, we observed significant clusters in 
the OFC (t(47) = 4.75, P = 0.02, [−4, 32, −20]), the striatum (right: peak 
t(47) = 3.57, P = 0.029, [12, 12, 16], left: peak t(47) = 3.63, P = 0.051, [−8, 
16, 7]) as well as bilateral hippocampus (right peak t(47) = 5.06, P = 0.0
02, [30, − 16, − 30] and left peak t(47) = 4.00, P = 0.04, [−34, −16, −16],  
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Fig. 5 | Hippocampal cognitive maps adapted to the task demands.  
a, Logistic functions for each participant fitted to how individual spatial 
weights changed over trials. Curves are colored according to a participant’s 
relative performance in the choice task. b, Correlation between the slopes of 
the estimated logistic function depicted in a and the inference error (Pearson’s 
r = −0.44, P = 0.002, CI (−0.64, −0.17), N = 47). c, Correlation between the 
slopes of the logistic function and the change in the hippocampal spatial 
enhancement effect extracted from the ROI depicted in Fig. 4a (Pearson’s 
r = 0.38, P = 0.008, CI (0.10, 0.60), N = 48). d, Correlation between the change 
in the hippocampal spatial and predictive enhancement effects. Both were 
extracted from the ROI depicted in Fig. 4a, (Pearson’s r = −0.62, P < 0.001, CI 
(− 0.77, −0.41), N = 48). e, Whole-brain analysis depicting the update in spatial 
weights at the time of feedback. f, Whole-brain analysis depicting voxels where 
the increase in the spatial cross-stimulus enhancement effect across participants 

correlates with the size of the hippocampal spatial weight update during the 
choice task as shown in e. g, Whole-brain analysis depicting voxels where the 
reward prediction error computed from a compositional map correlates  
with the size of the hippocampal spatial weight update during the choice task  
as shown in e. h, Whole-brain analysis depicting voxels where the relative 
accuracy based on the spatial versus the predictive map correlates with the size 
of the hippocampal spatial weight update during the choice task as shown in e.  
i, Mediation path diagram for the change in the hippocampal spatial cross-
stimulus enhancement effect extracted from the ROI depicted in Fig. 4a as 
predicted by the OFC relative map accuracy signal and the hippocampal spatial 
weight update. Statistical inference was done using bootstrapping with 10,000 
bootsamples. a: 0.7 ± 0.3, P = 0.02, b: 14.1 ± 4.6, P = 0.001, c': 2.9 ± 6.6, P = 0.57, ab: 
10.2 ± 5.7, P = 0.01. e–h are thresholded at P < 0.01, uncorrected for visualization. 
*P < 0.05; **P < 0.01; ***P < 0.001. All statistical tests were two-sided.
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SVC using the hippocampal formation mask, Extended Data Fig. 6a), 
suggesting that the larger the hippocampal weight update, the more 
strongly these regions tracked reward prediction errors.

In addition to the reward prediction error itself, it may be useful 
for the brain to track how consistent the observed outcome is with the 
predictions made based on either of the two cognitive maps. This would 
allow the brain to adaptively adjust the cognitive map depending on 
task relevance. To test how predictable the observed outcome is based 
on the spatial or predictive maps, we calculated the trial-wise unsigned 
prediction errors for each outcome separately for the spatial and the 
predictive map. The difference between these two prediction errors 
indicates how much more expected an outcome was according to the 
spatial as compared with the predictive map. We then set up a GLM that 
modeled this difference at feedback time. Again, we reasoned that, if 
there is a relationship between this signal and the spatial updating 
signal, then participants whose hippocampal weight updating signal 
was stronger should also show more of such a relative map accuracy 
signal, and therefore included the parameter estimate extracted from 
the hippocampal ROI as a covariate. The only region where the relative 
map accuracy covaried with the hippocampal updating signal was the 
medial orbitofrontal cortex (P = 0.03, [14, 46, −13], FWE corrected on 
the cluster level; Fig. 5h).

This demonstrates that the more the hippocampus tracks the spa-
tial weight update signal, the more the OFC signals both (1) how much 
the observed outcome diverges from the predicted reward based on 
the compositional map and (2) how consistent the observed outcome 
is with either of the two dimensions. This cannot be explained by a 
correlation between the two measures since the reward prediction 
errors are uncorrelated with the relative map accuracy regressors 
(average r = 0.017).

In line with the observation that the OFC adapts behavior by 
changing associative representations in other brain regions45, the 
orbitofrontal relative map accuracy signal may thus align task repre-
sentation with observed outcomes. By signaling the degree to which 
either map is task relevant, spatial weights may be updated during 
the choice task, which in turn leads to an update of the spatial map 
representation itself. To test this assumption, we investigated whether 
the spatial weight update in the hippocampus formally mediated the 
relationship between the relative map accuracy signal in the OFC and 
the hippocampal changes in the spatial map representation. The fact 
that the OFC signal and the hippocampal spatial weight update was sig-
nificant (path a = 0.7 ± 0.3, P = 0.02) is not surprising, since the ROI was 
identified based on voxels where the corresponding covariate explains 
some variance. However, the effect of the spatial weight updating sig-
nal on the change in representation remains significant if we control 
for the OFC signal (path b = 14.1 ± 4.6, P = 0.001). Furthermore, there is 
a relationship between the OFC signal and the change in hippocampal 
map representation (path c = 13.1 ± 6.6, P = 0.03), which can be fully 
accounted for by the hippocampal weight update (path c′ = 2.9 ± 6.6, 
P = 0.57, path ab = 10.2 ± 5.7, P = 0.01; Fig. 4h). Hence, participants with 
the largest OFC relative map accuracy signal at feedback time exhib-
ited the largest updates in spatial weights in the hippocampus, which 
in turn related to a larger change in the neural representation of the 
spatial map. This suggests a role for OFC signal in adjusting the use of 
an appropriate map to the current task demands, and an associated 
behavioral change.

Discussion
The hippocampal formation organizes relationships between events 
in cognitive maps, thought to be critical for generalization and infer-
ence. However, the neural and computational mechanisms underlying 
the ability to use cognitive maps for generalization remains unknown, 
especially in situations where stimuli are embedded in multiple rela-
tional structures. Here, we combined virtual reality, computational 
modeling and fMRI to demonstrate that the hippocampus extracts 

both spatial and predictive stimulus relationships from experience 
during navigation in a virtual arena. The strength of each neural rep-
resentation was related to the degree to which it influenced behavior 
in an independent choice task. Notably, the OFC tracked the evidence 
that outcomes observed in the choice task were consistent with the 
predictions made by the spatial and the predictive cognitive map. 
This effect was more pronounced in those individuals where the hip-
pocampus tracked the change in spatial weight on a trial-by-trial basis, 
perhaps suggesting a role of the OFC in adjusting the hippocampal 
map representation.

Because most individuals chose nonrandom behavioral policies 
for exploring the arena, stimulus relationships could be characterized 
both in terms of spatial distance as well as predictability. We found 
that the hippocampal formation extracted both types of relationships 
and represented those in clusters well known to represent distances 
to goals46, goal direction signals47 as well as associative distances 
between stimuli forming a nonspatial graph22. Notably, the degree 
to which either dimension was represented in this region determined 
the degree to which participant’s generalization behavior in a later 
choice task was influenced by the corresponding map. This links hip-
pocampal representations of relational structures with generalization 
in decision-making. It also shows that this system deals efficiently with 
higher-dimensional relational structures and can combine information 
from multiple dimensions for guiding choice.

Our analyses are consistent with the formation of two distinct 
spatial and predictive maps of stimulus relationships. However, 
a more parsimonious account may be a single map where spatial 
information about the distances between monsters is distorted in an 
experience-dependent way. A combined map would lead to a similar 
fit to choice behavior as the composition of a spatial and a predictive 
map, making it difficult to make inferences about this based on the 
modeling results. However, the spatial map dominates behavior 
and is represented more strongly in the brain, whereas the predic-
tive map seems to have a weaker, more modulatory, influence. The 
two dimensions are both located in the hippocampal formation and 
cannot be clearly separated anatomically. Furthermore, the change 
in the hippocampal spatial weight and the change in hippocam-
pal predictive weight are negatively correlated, demonstrating the 
interdependence between the two dimensions. The change in weight 
we observe both behaviorally and neurally may thus reflect a refine-
ment of the combined map driven by the choice task, where value 
information was consistent with the spatial, but not the predictive 
stimulus dimension.

Furthermore, participant choices became increasingly more influ-
enced by spatial relational knowledge as the choice task progressed, 
suggesting that which map is used for guiding choice can be adaptively 
adjusted to the current task demands. This effect was related to an OFC 
evidence integration signal, indexing the difference in relative map 
accuracy for the spatial compared with the predictive map at feedback 
time. Participants whose OFC responded more strongly also showed a 
larger spatial weight updating signal in the hippocampus at feedback, 
which was, in turn, related to a stronger increase in the representation 
of the spatial map from before to after the choice task. This is consist-
ent with the OFC tracking the evidence that the currently observable 
state of the world was driven by either of the two maps, and updating 
the degree to which either influences behavior accordingly.

Our findings are consistent with the proposed function of the OFC 
to represent state spaces, in particular in situations where the current 
state of the world is not readily observable and must be inferred48. The 
OFC is also typically involved in situations where participants need to 
adjust their behavior when outcome contingencies change30 or when 
memory responses require an arbitration between hippocampal and 
striatal inputs49. For example, reversal learning or outcome devalua-
tion, where previously acquired cue-outcome and response-outcome 
associations need to be adapted, rely on an intact OFC50.
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Importantly, our results also shed light on the interaction between 
OFC and the hippocampus. In line with previous observations indicat-
ing a relation between state representations in OFC and the hippocam-
pus31,51,52, our results indicate that OFC might play an active role in 
learning state presentations in the hippocampus through experience53.

On the other hand, predictive information can be extracted directly 
from experience, whereas spatial information needs to be inferred from 
the experienced stimulus transitions. It is therefore also conceivable 
that predictive relations are represented earlier after learning, whereas 
the representation of spatial relations only emerges after a period of 
consolidation. The rehearsal of spatial knowledge associated with a 
successful performance in the choice task may also have contributed 
to a strengthening of the spatial representation. However, the links 
between OFC activity representing the evidence that an outcome is 
generated by either of the two maps, the spatial weight update signal 
in the hippocampus and the refinement of the hippocampal cognitive 
map suggest that the reward that is consistent with the spatial map plays 
an additional role in changing the neural representation and behavior. 
Unfortunately, the correlation between reward distribution and spatial 
distances makes it difficult to truly disentangle to what degree changes 
in the map representation are driven by experience with the spatial map 
or consolidation as opposed to reward feedback.

We found substantial interindividual differences in terms of the 
degree to which participants represented the spatial and predictive 
relationships a stimulus was embedded in neurally, and were influ-
enced by those dimensions during choice. Indeed, in participants 
whose choices were influenced by the spatial or the predictive map, 
we found a cross-stimulus enhancement effect for spatial or predictive 
stimulus relationships, respectively. In participants whose choices were 
not influenced by those dimensions, on the other hand, the opposite 
was true: responses to a stimulus were suppressed if the preceding 
stimulus was close in space or time. Often, repetition suppression 
effects are more common than repetition enhancement effects in fMRI 
adaptation paradigms38. However, repetition enhancement effects 
have been reported both in single-cell recordings and in fMRI across 
sensory cortices54,55, in inferior frontal gyrus and anterior insula24 and 
in the hippocampus56. The neural mechanisms underlying repetition 
enhancement effects remain elusive38. In the visual cortex, repetition 
enhancement has been shown to result from disinhibition of inhibi-
tory inputs57, but it is unclear whether similar mechanisms underlie 
enhancement effects in higher cognitive areas. Enhancement effects 
are often observed when stimuli are degraded, new or perceptually 
similar58. Also, behavioral relevance can influence the directionality of 
an fMRI adaptation effect. For example, while repetition suppression 
effects are typically observed in the hippocampus when a stimulus that 
is irrelevant for the task at hand is repeated, repetition enhancement 
effects can be observed in the same region when a stimulus is task rel-
evant56. In our experiment, distances were highly relevant both for the 
choice task as well as the picture-viewing task that we used to measure 
stimulus representations. Alternatively, our results are also consistent 
with a differentiation of stimulus representations for stimuli that are 
close to each other in space and time. This is consistent with observa-
tions that multivoxel patterns in the hippocampal formation became 
more dissimilar for events that occurred close in time40, potentially 
reflecting a differentiation of stimulus representations that prevents 
interference59,60. It is conceivable that the decrease in stimulus similar-
ity for nearby stimuli drive the effects we observe. Of course, if repeti-
tion suppression effects scale with the similarity of underlying neural 
representations38, then a decrease in similarity after learning about 
the monster locations would lead to the decrease in suppression—or 
increase in enhancement—that we see.

In conclusion, our results suggest that the hippocampus rep-
resents different dimensions of experienced relationships between 
stimuli in parallel. The degree to which each representation is used 
for guiding choice is governed by an OFC relative accuracy signal. The 

OFC is related to a spatial updating signal in the hippocampus, which 
is in turn related to a change in the representation of the spatial map. 
This provides a mechanistic insight into the way in which appropri-
ate stimulus dimensions are selected for guiding decision-making in 
multidimensional environments.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41593-023-01283-x.
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Methods
This study was approved by the ethics committee at the Medical Faculty 
at the University of Leipzig (221/18-ek) and complies with all relevant 
ethical regulations.

Participants
A total of 52 neurologically and psychiatrically healthy participants 
took part in this study (mean age 26.8 ± 3.8 years, 20–34 years old, 27 
male). All participants gave written informed consent before participa-
tion. Participants were recruited using the participant database of the 
Max Planck Institute for Human Cognitive and Brain Sciences. Due to a 
scanner defect, three participants could not complete the last day. One 
participant was excluded due to problems during the preprocessing. 
A total of 48 participants therefore entered the analyses. Two of those 
participants did not do the arena task at the end of the experiment, but 
their data were included in all other analyses.

Experimental procedure
The experiment consisted of three parts performed on three subse-
quent days. On day 1, participants learned the stimulus distribution in a 
virtual arena. On day 2, we assessed the stimulus representation in the 
fMRI scanner. On day 3, participants performed a choice task to learn 
the rewards associated with each stimulus in the scanner. Afterwards, 
we again assessed the stimulus representations in the scanner. The ses-
sions are described in more detail below. The exploration and object 
location memory task were coded using the Python-based virtual real-
ity software package Vizard (v.4, WorldViz LLC). All other tasks were 
implemented in Matlab R2016a using Psychtoolbox v.3. Imaging data 
was preprocessed using fmriprep. Imaging and behavioral analyses 
were carried out with Matlab.

Day 1. Participants were first familiarized with the stimuli by being 
presented with the monsters one-by-one on the screen. They could 
click through the stimuli to proceed to the next one. Participants were 
then instructed that they would be asked to learn where each mon-
ster belongs in space, and that this knowledge would be important 
for collecting points in later sessions. Monsters were distributed in 
a circular arena with a virtual radius of 15 m (Fig. 1a). Which monster 
was presented in which location was randomized across participants. 
Five distinct trees were located behind the wall surrounding the arena, 
which functioned as landmarks. The location of the trees was rand-
omized in such a way that one tree occurred at a random position in 
every 72° block in each participant. Tree locations were fixed across 
all experimental session.

Participants then learned the location of stimuli in space by navi-
gating around a virtual arena (Fig. 1e) in multiple blocks. Each block 
consisted of an exploration phase and an object location memory 
task. In the exploration phase, participants navigated around the 
arena in any way they liked and for as long as they wanted. Whenever a 
participant approached a monster (that is, they entered a 3-m radius 
around the monster location), it became visible and slowly turned 
around its own axis. This means that participants never saw all mon-
sters at the same time. After each exploration phase, participants 
performed an object location memory task. In this task, participants 
were cued with a monster and had to navigate to the corresponding 
location (Fig. 1f). Feedback indicated how close to the correct loca-
tion a monster was positioned (<3 m, <5 m, <7 m, <9 m, >9 m). In 
each block, every monster had to be positioned once. The order was 
randomized. If performance reached a prespecified performance 
criterion of <3 m replacement error averaged across all monsters 
(corresponding to <10% error) in a block, the session terminated if 
a participant had completed at least five blocks. Participants per-
formed a minimum number of five and a maximum number of ten 
blocks of this task to ensure that they had a good knowledge of the 
stimulus distribution.

Day 2. Before the scanning session, participants had another oppor-
tunity to explore the monster locations freely, followed by one more 
round of the object location memory task with feedback.

Subsequently, we assessed the monster representations in the 
scanner using a picture-viewing task. Here, participants were presented 
in the fMRI scanner with the monsters for 2 s in a random order on a red 
or a blue background, followed by an intertrial interval drawn from a 
truncated exponential function (2–5 s) with a mean of 3 s. Participants 
were instructed to view the images attentively. Occasionally (once 
after each monster on each background color), two monsters were 
presented simultaneously and participants had to indicate which of 
the two monsters was located closer in space to the monster they had 
seen immediately before the two monsters (self-paced). Participants 
received no feedback. The purpose of this task was to ensure that par-
ticipants would always evoke the location a monster was embedded 
in during the stimulus presentations. Participants were instructed 
that the background color was irrelevant for performing the task. 
Each monster was presented six times on each background color (red, 
blue) per block, resulting in 144 stimulus presentations in each block. 
Participants completed three blocks of this task. Stimulus sequences 
were generated pseudorandomly using a genetic algorithm with the 
following constraints: Each stimulus in each context occurred the same 
number of times per block and no monster–monster transition was 
presented more than once.

After the scanning session, another round of the object location 
memory task was performed without feedback to assess participants’ 
memory for the monster locations.

Day 3. Before the scanning session, another round of the object loca-
tion memory task was performed without feedback to assess partici-
pants’ memory for the monster locations.

In the scanner, participants then performed a choice task. Here, 
they were presented with pairs of monsters and instructed to select 
the monster that would lead to the highest reward. The reward dis-
tribution was related to the position of the monsters in space and the 
context as indicated by the background color (Fig. 1a). Participants 
were instructed that they would receive similar amounts of points 
for monsters located near each other in space. They learned the two 
value distributions in a blocked fashion, with ten trials of choices in 
context 1 alternating with ten trials of choices in context 2. Background 
colors and contexts were counterbalanced across participants. Value 
distributions were selected such that pairwise spatial distances and 
pairwise value differences across both contexts were not significantly 
correlated and that the overall value across all stimuli was similar across 
the two contexts.

Two stimuli in each context (‘inference stimuli’) could never be 
chosen during the choice task (Fig. 1a,b). These were later used to 
assess whether participants were able to combine information about 
rewards with information about the relationship between monsters to 
infer stimulus values that were never experienced directly. Critically, 
the value of one inference stimulus per context was high (71 and 72) and 
the value of the other inference stimuli was low (3 and 13).

Participants were presented with the two options until they indi-
cated their selection by button press (self-paced). After a jittered inter-
trial interval, the outcome associated with the selection was presented 
for 2 s, followed by another jittered intertrial interval. Both intervals 
were again drawn from a truncated exponential function (between 
2 and 5 s) with a mean of 3 s. Participants performed 100 trials of the 
choice task.

After the choice task, three blocks of the picture-viewing task were 
performed in the scanner. This time, the background color indicated 
the relevant context, and participants were instructed to think about 
each monster’s location in space and its associated value. Occasionally 
(once after each monster on each background color), two monsters 
were presented simultaneously and participants had to indicate which 
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of the two monsters was located closer in space to the monster they 
had seen immediately before the two monsters or which monster had 
a more similar value. Which task was to be performed was indicated 
with a symbol presented above the two options. Correct answers were 
rewarded with €0.10. Stimulus sequences were the same as on day 2.

After the scanning session, another round of the object location 
memory task was performed without feedback to assess participants 
memory for the monster locations. This was followed by four brief 
tasks. (1) Participants had to indicate on a sliding scale from 0 to 100 
how many points they would receive for each monster in each context, 
(2) participants rated on a scale from ‘not at all’ to ‘very much’ how much 
they liked each monster, (3) participants arranged monsters in an arena 
according to their similarity (Arena task 1) or (4) spatial location (Arena 
task 2). In each task, the order in which monsters were presented was 
randomized across participants.

Reimbursement
Participants were paid a baseline fee of €9 per hour for the behavioral 
parts of the experiment and €10 per hour for the fMRI sessions. In addi-
tion, participants could earn a monetary bonus depending on perfor-
mance. Points accumulated during the choice blocks were converted 
into money (100 points = €0.10). Furthermore, each correct choice 
during the picture-viewing task was rewarded with €0.10.

Behavioral measures

•	 Spatial distance: measures the Euclidean distances between 
stimuli in the virtual arena. We obtained estimates of stimulus 
locations for every participant by performing path integration 
on their navigation runs.

•	 Predictive distance: measures the predictive distances 
between stimuli in the virtual arena (see Modeling for deriva-
tion of this measure).

•	 Replacement error: measures the Euclidean distance between 
the drop location and the true stimulus location in the object 
location memory task.

•	 Spatial effect (on choice behavior): measures the degree to 
which participants generalize along the spatial dimension in 
the choice task on day 3 according to the GP fit (Modeling). Per-
participant measure.

•	 Predictive effect (on choice behavior): measures the degree to 
which participants generalize along the predictive dimension 
in the choice task on day 3 according to the GP fit (Modeling). 
Per-participant measure.

•	 Spatial weight: measures the relative size of the spatial effect 
versus the predictive effect in the choice task on day 3. A spatial 
weight of 1 means that the choices are only influenced by the 
spatial dimension. A spatial weight of 0 means that the choices 
are influenced only by the predictive dimension. Per-partici-
pant measure.

•	 Spatial weight update: measures the difference in spatial 
weight from one trial to the next during the choice task on 
day 3. Per-trial measure.

•	 Slope: slope of the logistic fit to spatial versus predictive 
weight during choice task on day 3. Per-participant measure.

•	 Reward prediction error: measures the reward prediction error 
generated based on a compositional map during the choice 
task on day 3. Used as a parametric regressor in a univariate 
fMRI analysis. Per-trial measure.

•	 Relative map accuracy: difference in unsigned prediction 
errors based on the predictive versus spatial map computed 
during the choice task on day 3. Used as a parametric regressor 
in a univariate fMRI analysis. Per-trial measure.

•	 Inference error: defined as the root-mean-square error 
between the true values of the inference stimuli and the error 

ratings provided by a participant in the post-scan test phase on 
day 3. Per-participant measure.

•	 Map reproduction error: measures the root-mean-square 
error between the true z-scored spatial distances between 
the monsters in the virtual arena and the z-scored distances 
between the monster positions in the arena task. We z-scored 
the distances to ensure that they had a comparable range.

fMRI measures

•	 Spatial fMRI effect: measures the degree to which blood 
oxygen level-dependent (BOLD) activity in response to a 
stimulus during the picture-viewing task covaries with spatial 
distances to the preceding stimulus (repetition enhancement). 
Per-participant measure.

•	 Predictive fMRI effect: measures the degree to which BOLD 
activity in response to a stimulus during the picture-viewing 
task covaries with predictive distances to the preceding stimu-
lus (repetition enhancement). Per-participant measure.

•	 Change in hippocampal spatial fMRI effect: difference in spatial 
fMRI effect from day 2 to day 3. Per-participant measure.

•	 Change in hippocampal predictive fMRI effect: difference in 
predictive fMRI effect from day 2 to day 3. Per-participant 
measure.

•	 Spatial weight update fMRI effect: measures the degree to 
which univariate BOLD signal during the choice task on day 3 
covaries with the spatial weight update. Per-participant 
measure.

•	 Reward prediction error fMRI effect: measures the degree to 
which univariate brain activity covaries with the reward predic-
tion error generated based on a compositional map during the 
choice task on day 3. Hippocampal spatial weight update is 
used as a covariate in this analysis. Per-participant measure.

•	 Relative map accuracy fMRI effect: measures the degree to 
which univariate brain activity covaries with the difference in 
absolute unsigned prediction errors for the spatial and predic-
tive maps. Hippocampal spatial weight update is used as a 
covariate in this analysis. Per-participant measure.

Modeling
We used GP regression to model reward learning and generalization in 
the choice task. GPs define probability distributions over functions 
f ∼ 𝒩𝒩(m(x), k(x, x′)) , where m(x) is the mean function, giving the 

expected function values ̂y at input points x, and k(x, x′) the covariance 
function, or kernel, defining how similar any pair of input points, x and 
x′, are. GPs can be updated to posterior distributions over functions 
by conditioning on a set of observed function outputs y. Here, the 
posterior mean function is given by

mpost(x) = kT(K + σ2)−1yT (1)

where k is the kernel matrix containing the covariance between train-
ing points and the evaluation points, K is the kernel matrix containing 
the covariance between all training points and σ2 is a diagonal variance 
matrix.

The hypothesis that generalization is guided by a spatial cognitive 
map corresponds to equipping a GP model with a Gaussian (or radial 
basis function) kernel, representing similarity as an exponentially 
decaying function of squared Euclidean distance. The Gaussian kernel 
defines similarity as follows:

k(x, x′) = σ2
f
exp (−∥ x − x′∥2

2λ2 ) (2)

where σ2
f
 is a parameter controlling the degree to which the predictions 

differ from the mean, and λ is the lengthscale parameter, controlling 
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how strongly input point similarity decays with distance. We obtained 
estimates of stimuli locations for every participant by performing path 
integration on their navigation runs. The path integration procedure 
consisted of tracking the changes in participants’ location from one 
time step to the next, adding a small amount of Gaussian noise 
(σ = 0.001) to the location estimates at each time point. A monster’s 
location was calculated as the average of the recorded positions that 
a participant was in whenever within a 3-m radius of that monster.

To construct a kernel that corresponds to the hypothesis that 
predictive relations guided generalization, we started by computing 
a successor matrix M for every participant33. Each entry in the successor 
matrix M(s, s′) (equation (3)) contains the expected discounted number 
of future visits of stimulus s′, starting from a visit to stimulus s

M(s, s′) = 𝔼𝔼 [
∞
∑
t=0

γt𝕀𝕀(st = s′)|s0 = s] (3)

M̂(s, ∶) ← M̂(s, ∶) = η [1s + γM̂(s′, ∶) − M̂(s, ∶)] (4)

where γ is the discount factor and  is the indicator function. The suc-
cessor matrix can be approximated from a participant’s stimulus visita-
tion history using a simple temporal-difference updating rule61 
(equation (4)), where M̂(s, ∶) is the row corresponding to stimulus s, 1s 
is a vector of zeros except for the sth component which is a 1, and η is 
the learning rate. From M we computed the transition matrix T using 
the following equation (see Supplementary Note section 1 for 
derivation):

T = M−1 − I
−γ (5)

where I is the identity matrix. We enforced that T was symmetric by tak-
ing the pairwise maximum of the entries of its upper and lower triangles 
(Extended Data Fig. 10e). From T, which describes the relevant partici-
pant’s probabilities of walking directly from one stimulus to another, 
we computed the diffusion kernel62 K, embodying the hypothesis that 
predictive relations guide generalizations (equation (6)).

K = exp(−λL) (6)

Here, exp is matrix exponentiation, L is the normalized graph Laplacian 
which equals I − T and λ is a lengthscale parameter analogous to that 
of the Gaussian kernel (equation (2)). Although we compute the transi-
tion matrix T by learning a successor matrix M, one could also estimate 
T by counting the number of times a participant transitioned directly 
between two stimuli, the transition probabilities being proportional 
to the count number. We found that computing the predictive kernel 
this way did not produce meaningful differences in model fit (see 
Extended Data Fig. 10d for an analysis involving asymmetric predictive 
relations).

To obtain the compositional kernel, we took the average of the 
Gaussian and the diffusion kernel63 and to implement the mean tracker, 
we used a GP model whose kernel was the identity matrix I. We assumed 
an equal weighting of the spatial and predictive kernel in the compo-
sitional kernel. Constructing the compositional kernel such that the 
weighting reflected the spatial and predictive GPs posterior probability 
of generating reward data did not improve fit to participant choices 
(see Extended Data Fig. 10a).

To obtain the various GP models’ estimates of stimuli’s rewards at 
any given trial in the choice task, we conditioned them on all previously 
observed stimuli’s rewards for the relevant context up to that point, and 
computed the posterior mean using equation (1). The differences in 
estimated rewards were used as single predictors of participant choices 
in a logistic mixed-effects model with a participant-specific random 

slope36, implemented in R using the lme4 package64. We optimized 
hyperparameters to minimize the log-likelihood of producing the 
choice data using a grid search. For the Gaussian kernel, we optimized 
the lengthscale λ, for the diffusion kernel we optimized the learning rate 
η, and set the discount rate parameter γ to 0.9 and the lengthscale λ to 
1. For the compositional, spatio-predictive kernel, we optimized both 
the Gaussian kernel’s lengthscale and the learning rate. The variance 
in equation (1) was set 0.01 to improve numerical stability for matrix 
inversion. We first obtained each model’s hyperparameters that gave 
the best fit on the full choice dataset. Then, using these hyperpara-
meters, we performed a leave-one-trial-out cross-validation (LOO-CV) 
procedure and obtained each model’s cross-validated log-likelihood 
of producing every choice in the dataset. We then computed the pos-
terior model frequencies and exceedance probabilities65, as reported 
in Fig. 3b.

We used the same procedure for modeling participants’ value judg-
ments. Here, we made the GP models predict the values of all stimuli, 
based on all reward observations the participants had made, respec-
tively. The GPs were equipped with the best-fitting hyperparameters 
(Supplementary Note section 3) from the choice task. We then sought 
to predict participants’ value judgments for the different stimuli using 
the various value estimates as single predictors (plus an intercept) in 
separate linear mixed-effects models with a participant-specific ran-
dom slope. We split the value judgments into two sets: one containing 
the value judgments of the inference stimuli, and another containing 
the value judgments of all monsters except the inference stimuli. Again, 
we performed LOO-CV to obtain model-specific log-likelihoods for all 
value judgments in the two datasets. Since the mean tracker could not 
generate predictions for the inference stimulus any different from its 
prior mean function (which was 0), we used the average of the mean 
tracker’s value predictions for the noninference stimuli as a baseline 
model. From the cross-validated log-likelihoods, we computed the 
corresponding sets of model frequencies and exceedance probabilities.

To compute the effects of the spatial and predictive components 
on each participant’s choice behavior, we fitted mixed-effects logistic 
regression models like the ones described above, using the estimated 
value differences generated by the spatial and predictive maps as indi-
vidual predictors (using their respective best-fitting hyperparameters) 
in the same model. Since the two predictors were correlated, we created 
two such models, one where the spatial value difference was the main 
predictor, and the second predictor was the predictive minus the spa-
tial predictor, and a second model where this relation was inverted66. 
We aggregated the unsigned mixed effects (random effects plus the 
fixed effects) across these two models for all participants, which left 
us with the effects for the two maps. To compute the spatial weights, 
we calculated how big the spatial effects were in proportion to the total 
effects (spatial plus predictive effects). The predictive weights were 
consequently 1 minus the spatial weights. To compute the slopes, we 
first obtained a weight for the spatial map for all trials and for all partici-
pants. We computed these weights by estimating two models similar to 
those used to estimate participant-specific effects, this time including 
an interaction term with trial number as well. To obtain trial-specific 
spatial weights for all participants, we estimated how likely the spatial 
by trial interaction predictor was at predicting each individual choice 
compared with the predictive by trial interaction predictor, aggregat-
ing over our two models. We found that weighing both maps’ predicted 
reward-difference by the estimated trial-by-trial weights improved 
fit to choice data (Extended Data Fig. 10c), providing confirmatory 
evidence that participants actually change weights over the course of 
the task. Moreover, we also found that the posterior probability of the 
spatial over the predictive model in generating reward observations 
for a particular participant at trial t was a significant predictor of the 
spatial weight estimated for that participant at trial t + 1, t(42.69) = 9.
437, P < 0.001, establishing a connection between how well the spatial 
map explains the reward data at t, and how much participants rely on 
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the spatial map for generalization on the subsequent trial. We also 
observed that the time-series of trial-by-trial spatial weights (averaged 
over participants) resembled a logistic function, going from lower 
spatial weights early in the task, to higher weights later (Extended Data 
Fig. 10b). We then fitted logistic slopes to each participant’s spatial 
weight time-series, predicting spatial weights for single participants 
from trial number, using logistic regression.

MRI data acquisition and preprocessing
Visual stimuli were projected onto a screen via a computer monitor. Par-
ticipants indicated their choice using an MRI-compatible button box.

MRI data were acquired using a 32-channel headcoil on a 3 T Sie-
mens Magnetom SkyraFit system (Siemens). fMRI scans were acquired 
in axial orientation using T2*-weighted gradient-echo echo-planar 
imaging (GE-EPI) with multiband acceleration, sensitive to BOLD con-
trast67,68. Echo-planar imaging (EPI) with sampling after multiband 
excitation achieves temporal resolution in the subsecond regime while 
maintaining a good slice coverage and spatial resolution67,68. We col-
lected 60 transverse slices of 2 mm thickness with an inplane resolution 
of 2 × 2 mm, a multiband acceleration factor of three, a repetition time 
of 2 s, and an echo time of 23.6 ms. Slices were tilted by 90° relative to 
the rostrocaudal axis. The first five volumes of each block were dis-
carded to allow for scanner equilibration. Furthermore, a T1-weighted 
anatomical scan with 1 × 1 × 1 mm resolution was acquired. In addition, 
a whole-brain field map with dual echo time images (TE1 = 5.92 ms, 
TE2 = 8.38 ms, resolution 2 × 2 × 2.26 mm) was obtained to measure and 
later correct for geometric distortions due to susceptibility-induced 
field inhomogeneities.

Anatomical data preprocessing. Results included in this manu-
script come from preprocessing performed using fMRIPrep v.1.4.0  
(refs. 69) (RRID:SCR_016216), which is based on Nipype v.1.2.0  
(refs. 70,71) (RRID:SCR_002502).

A total of two T1-weighted (T1w) images were found within the 
input BIDS dataset. All were corrected for intensity nonuniformity 
(INU) with N4BiasFieldCorrection72, distributed with ANTs v.2.2.0 
(ref. 73). The T1w reference was then skull-stripped with a Nipype imple-
mentation of the antsBrainExtraction.sh workflow (from ANTs), 
using OASIS30ANTs as target template. Brain tissue segmentation of 
cerebrospinal fluid (CSF), white matter (WM) and gray matter (GM) 
was performed on the brain-extracted T1w using fast74. A T1w refer-
ence map was computed after registration of two T1w images (after 
INU-correction) using mri_robust_template75.

Brain surfaces were reconstructed using recon-all76, and the 
brain mask estimated previously was refined with a custom variation 
of the method to reconcile ANTs-derived and FreeSurfer-derived seg-
mentations of the cortical gray matter of Mindboggle77. Volume-based 
spatial normalization to one standard space (MNI152NLin6Asym) was 
performed through nonlinear registration with antsRegistration 
(ANTs v.2.2.0), using brain-extracted versions of both T1w reference 
and the T1w template. The following template was selected for spatial 
normalization: FSL’s MNI ICBM 152 nonlinear 6th Generation Asymmet-
ric Average Brain Stereotaxic Registration Model78 [RRID:SCR_002823; 
TemplateFlow ID: MNI152NLin6Asym].

Functional data preprocessing. For each of the seven BOLD runs per 
participant (across all tasks and sessions), the following preprocess-
ing was performed. First, a reference volume and its skull-stripped 
version were generated using a custom methodology of fMRIPrep. 
A deformation field to correct for susceptibility distortions was esti-
mated based on a field map that was coregistered to the BOLD refer-
ence, using a custom workflow of fMRIPrep derived from D. Greve’s 
epidewarp.fsl script and further improvements of HCP Pipelines79. 
Based on the estimated susceptibility distortion, an unwarped BOLD 
reference was calculated for a more accurate coregistration with the 

anatomical reference. The BOLD reference was then coregistered to 
the T1w reference using bbregister (FreeSurfer) which implements 
boundary-based registration80. Coregistration was configured with 
9 d.f. to account for distortions remaining in the BOLD reference. 
Headmotion parameters with respect to the BOLD reference (trans-
formation matrices, and six corresponding rotation and translation 
parameters) are estimated before any spatiotemporal filtering using 
mcflirt81.

BOLD runs were slice-time corrected using 3dTshift from AFNI 
20190105 (ref. 82). The BOLD time-series (including slice-timing cor-
rection when applied) were resampled onto their original, native space 
by applying a single, composite transform to correct for headmotion 
and susceptibility distortions. These resampled BOLD time-series will 
be referred to as preprocessed BOLD in original space, or just preproc-
essed BOLD. The BOLD time-series were resampled into standard space, 
generating a preprocessed BOLD run in [‘MNI152NLin6Asym’] space. 
First, a reference volume and its skull-stripped version were generated 
using a custom methodology of fMRIPrep.

Additionally, several confounding time-series were calculated 
based on the preprocessed BOLD: framewise displacement (FD), DVARS 
and three regionwise global signals. FD and DVARS are calculated for 
each functional run, both using their implementations in Nipype83. 
The three global signals are extracted within the CSF, the WM and the 
whole-brain masks. Additionally, a set of physiological regressors 
were extracted to allow for component-based noise correction Com-
pCor84. Principal components are estimated after high-pass filtering 
the preprocessed BOLD time-series (using a discrete cosine filter with 
128 s cut-off) for the two CompCor variants: temporal (tCompCor) and 
anatomical (aCompCor). tCompCor components are then calculated 
from the top 5% variable voxels within a mask covering the subcorti-
cal regions. This subcortical mask is obtained by heavily eroding the 
brain mask, which ensures it does not include cortical GM regions. For 
aCompCor, components are calculated within the intersection of the 
aforementioned mask and the union of CSF and WM masks calculated in 
T1w space, after their projection to the native space of each functional 
run (using the inverse BOLD-to-T1w transformation). Components 
are also calculated separately within the WM and CSF masks. For each 
CompCor decomposition, the k components with the largest singular 
values are retained, such that the retained components’ time-series are 
sufficient to explain 50% of variance across the nuisance mask (CSF, 
WM, combined or temporal). The remaining components are dropped 
from consideration. The headmotion estimates calculated in the cor-
rection step were also placed within the corresponding confounds file. 
The confound time-series derived from headmotion estimates and 
global signals were expanded with the inclusion of temporal derivatives 
and quadratic terms for each85.

Frames that exceeded a threshold of 0.5 mm FD or 1.5 standard-
ized DVARS were annotated as motion outliers. All resamplings can 
be performed with a single interpolation step by composing all the 
pertinent transformations (that is, headmotion transform matrices, 
susceptibility distortion correction when available and coregistrations 
to anatomical and output spaces). Gridded (volumetric) resamplings 
were performed using antsApplyTransforms (ANTs), configured 
with Lanczos interpolation to minimize the smoothing effects of other 
kernels86. Nongridded (surface) resamplings were performed using 
mri_vol2surf (FreeSurfer).

fMRI data analysis
We implemented four event-related GLMs in SPM 12 to analyze the 
fMRI data. All GLMs included a button press regressor as a regres-
sor of no interest. All regressors were convolved with a canonical 
haemodynamic response function. Because of the sensitivity of the 
blood oxygen level-dependent signal to motion and physiological 
noise, all GLMs included frame-wise displacement, six rigid-body 
motion parameters (three translations and three rotation), six 
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anatomical component-based noise correction components (aCom-
pCorr) and four cosine regressors estimated by fmriprep as con-
found regressors for denoising. Each block was modeled separately 
within the GLMs.

The first GLM modeled events during the picture-viewing task 
and contained separate onset regressors for each of the 12 stimuli. 
By modeling each stimulus separately, we could account for any 
stimulus-specific differences in activity driving the main effects and 
focus on distance-dependent modulations that ride on top of those 
stimulus-specific differences in activation. Each onset regressor was 
accompanied by two parametric regressors. These corresponded 
to the distance to the stimulus presented immediately before the 
current stimulus according to the spatial kernel and distance to the 
immediately preceding stimulus according to the predictive kernel. 
Both parametric regressors were z-scored, but not orthogonalized, 
so that any shared variance would be discarded. Trials where the 
same stimulus was repeated were modeled separately and stimuli 
immediately following a choice were excluded. Furthermore, the 
GLM contained an onset regressor for the choice trials. This was 
accompanied by two parametric regressors, reflecting chosen and 
an unchosen distance between the two stimuli and the preceding 
stimulus. Each of the three blocks on each day were modeled sepa-
rately within the same GLM.

The second, third and fourth GLMs modeled events during the 
choice task. In these GLMs, three onset regressors were included, one 
indicating the choice period, the second indicating feedback times 
and the third corresponding to button presses. The duration of each 
event corresponded to the actual duration during the experiment. The 
choice period regressor was accompanied by two parametric modula-
tors reflecting chosen and unchosen values of the stimuli as estimated 
by the winning model. Both were demeaned, but not orthogonalized.

In the second GLM, the feedback regressor was accompanied by a 
spatial weight updating signal. A trial-by-trial estimate of the influence 
of the spatial map on the choices was estimated, and the demeaned 
trial-by-trial difference was included as a parametric modulator.

In the third GLM, the feedback regressor was accompanied by a 
parametric regressor reflecting a prediction error signal computed 
based on the compositional map.

In the fourth GLM, the feedback regressor was accompanied by a 
parametric regressor reflecting the prediction error difference signal. 
Here, the reward prediction error was estimated separately for the 
spatial and the predictive map, and the demeaned difference between 
the absolute prediction errors was included as a parametric regressor.

The contrast images from the first level were smoothed spatially 
using a Gaussian kernel of 8 mm FWHM and images of all participants 
were then analyzed as a second-level random effects analysis. We 
report all our results in the hippocampal formation, as this was our 
a priori ROI, at an uncorrected cluster-defining threshold of P < 0.001, 
combined with peak-level FWE small-volume correction at P < 0.05. 
For the SVC procedure, we used a mask comprising hippocampus, 
entorhinal cortex and subiculum (Extended Data Fig. 6). Results in the 
striatum and orbitofrontal cortex are reported at a cluster-defining 
threshold of P < 0.001 uncorrected, combined with peak-level FWE 
small-volume correction at P < 0.05 within an orbitofrontal and a cau-
date mask (Extended Data Fig. 6). Activation in other brain regions 
was considered significant only at a level of P < 0.001 uncorrected if 
it survived whole-brain FWE correction at the cluster level (P < 0.05). 
While we used masks to correct for multiple comparisons in our ROIs, all 
statistical parametric maps presented in the manuscript are unmasked 
and thresholded at P < 0.01 for visualization.

To relate neural effects to behavioral parameters and to each other, 
we defined the following ROIs: spatial hippocampal map in session 3 
from GLM 1 (Fig. 4a); hippocampal spatial weight update from GLM 2 
(Fig. 5e); change in hippocampal map representation from session 2 
to session 3 with hippocampal spatial weight update as covariate from 

GLM 1 (Fig. 5f); and OFC difference in relative map accuracy with hip-
pocampal spatial weight update as covariate from GLM 3 (Fig. 5h). All 
voxels exceeding a threshold of P < 0.001 were included in an ROI if the 
cluster survived correction for multiple comparisons.

To estimate how much an effect covaried with behavioral effects, 
we included spatial and predictive weights, respectively (Fig. 4f), as well 
as the inference error (Fig. 4g) as a covariate on the second level and 
tested for significant effects. In Fig. 5f–h, we included the parameter 
estimate reflecting the size of the hippocampal spatial weight update 
signal (Fig. 5e) as a covariate.

Statistics and reproducibility
All correlations used Pearson’s correlations and we report two-tailed 
P values. Data normality was assessed using the Lilliefors test. No 
statistical method was used to predetermine sample size, but the 
final sample size (n = 48) exceeds commonly accepted good practice 
in the field6,8,22. Data from four participants were excluded due to a 
scanner defect (n = 3) and problems during preprocessing (n = 1). 
The experiments were not randomized to different conditions. Data 
collection and analysis were not performed blind to the conditions of 
the experiments.

Mediation analysis
We used the Mediation and Moderation Toolbox41,42 to perform two 
single-level mediation analyses (Fig. 4h and Fig. 5i). The total effect of 
the independent variable X on the dependent variable Y is referred to 
as path c. That effect is then partitioned into a combination of a direct 
effect of X on Y (path c′), and an indirect effect of X on Y that is transmit-
ted through a mediator M (path ab). We also estimated the relationship 
between X and M (path a) as well as between M and Y (path b). This last 
path ‘b’ is controlled for X, such that paths ‘a’ and ‘b’ correspond to 
two separable processes contributing to Y. We determined two-tailed 
uncorrected P values from the bootstrap confidence intervals (CI) for 
the path coefficients42.

To test whether the spatial weights mediate the effect of hip-
pocampal spatial map on the inference error, we defined X as each 
individual’s parameter estimate from the hippocampal ROI encoding 
the spatial map (ROI based on Fig. 4a). The mediator M corresponded 
to each participant’s spatial weight as estimated by the model fit to 
the choice data. The outcome variable Y was defined as a participant’s 
inference error.

To test for a significant mediation linking the OFC relative map 
accuracy signals (X) to the change in hippocampal spatial map (Y), we 
extracted parameter estimates from an orbitofrontal ROI tracking the 
evidence that an outcome is predicted by either of the two maps (X, ROI 
based on Fig. 5h) and related this to the change in spatial representation 
in the left hippocampus (Y, ROI based on Fig. 5f) via the spatial updating 
signal in the right hippocampus (M, ROI based on Fig. 5e).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw behavioral data, unthresholded group-level statistical brain maps 
from neuroimaging analyses as well as source data to reproduce all fig-
ures are publicly available here: https://github.com/tankred-saanum/
Cognitive-maps-for-rewards. Raw imaging data in BIDS format are 
publicly available on Openneuro: https://openneuro.org/datasets/
ds004360 (ref. 87). Source data are provided with this paper.

Code availability
Task, analysis and computational modeling code are pub-
licly available here: https://github.com/tankred-saanum/
Cognitive-maps-for-rewards88.
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Extended Data Fig. 1 | Exploration paths on day 1 in each individual. Each panel represents the exploration trajectories concatenated across exploration blocks on 
day 1 in one participant. Purple indicates the stimulus locations and black the participant’s trajectory.
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Extended Data Fig. 2 | Stimulus positioning after learning. a Each panel 
displays the data for one stimulus. Yellow indicates the true stimulus position. 
Black indicates the drop location for each participant. The replacement error 
is defined as the Euclidean distance between the true location and the drop 
location. Visualized is the data from the last object location memory task 
block on day 1, that is at the end of learning. b Linear regression of values on 
replacement error. On day 2 as well as on day 3 before the choice task, there 
was no relationship between values participants learned to associate with each 
stimulus and replacement error (all p values > 0.05, N = 48). This is not surprising, 
since participants only learned the value associations on day 3. On day 3 after 
the choice task, the replacement error was smaller the higher the reported value 
of a stimulus (t(47) = -2.9, p = 0.005, N = 48, one-sample two-sided t-tests). The 

difference between value-dependent performance pre and post choice was also 
significant on day 3 (t(47) = 2.26, p = 0.03, N = 48, paired two-sided t-tests), but 
not on day 2 (t(47) = 0.27, p = 0.79, N = 48, paired two-sided t-tests). This suggests 
that participants’ memory expression was more accurate around valuable 
stimuli compared to less valuable ones after participants learned to associated 
stimuli with values. We used the average values that participants reported at 
the end of the study on day 3 as predictors. For inference stimuli, only the value 
experienced in the other context was considered. The central mark indicates 
the median, and the bottom and top edges of the box indicate the 25th and 75th 
percentiles, respectively. The whiskers extend to the most extreme data points 
not considered outliers, and the outliers are plotted individually using the ’+’ 
marker symbol.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 3 | Effects of value learning on behavioral indicators of the 
map representation. a Replacement error in the object location memory task on 
days 2 and 3 before and after the scanning session. No significant change between 
sessions (main effect of session: F(1, 47) = 1.87, p = 0.18, main effect of pre/post: 
F(1, 47) = 0.86, p = 0.34, interaction: F(1, 47) = 0.37, p = 0.55, 2-way repeated 
measures ANOVA, N = 48). b Relative time spent in the same position during the 
object location memory task. Participants paused significantly less on day 3 after 
the value learning task (main effect of session: F(1, 47) = 7.77, p = 0.008, main 

effect of pre/post: F(1, 47) = 6.56, p = 0.01, interaction: F(1, 47) = 10.19, p = 0.003, 
2-way repeated measures ANOVA, N = 48). c Relationship between root mean 
square error between true values and reported values at the end of the study and 
slope (Pearson’s r = -0.45, two-sided p = 0.002, CI: [-0.65, -0.18], N = 47), **p < 0.01. 
The central mark in a and b indicates the median, and the bottom and top edges 
of the box indicate the 25th and 75th percentiles, respectively. The whiskers 
extend to the most extreme data points not considered outliers, and the outliers 
are plotted individually using the ’+’ marker symbol.
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Extended Data Fig. 4 | Full modeling results. a Each model’s probability of 
predicting individual participants’ value ratings for the experienced stimuli 
at the end of the study. Circles reflect each participant’s probability of being 
described best by each model. The winning model does not generalize about 
value (N = 48). b Model AIC differences for the choice task. c Models’ McFadden’s 
R^2 for the choice task, quantifying how likely a model is to produce the data 
relative to a random model, where a score of 1 means that the model is infinitely 
more likely to produce the data, and a score of 0 means the model is as likely as 
the random model. The dashed line represents the score of a model that uses the 
true value difference between options as a predictor on trials where participants 
had seen the values of both options. d Model AIC differences for predicting 
participants’ value ratings for the inference stimuli. e The pairwise correlation 
between all participants’ predictive kernels estimated with a learning rate of 
0.4125, which gave the best fit for the predictive model. f Predicting reward 
generalization using participants’ own predictive kernel yields substantially 
better fits to their choice behavior (blue line) than predicting generalization 

using another randomly picked participant’s predictive kernel (red line, N = 
48). Error bars are standard deviations of negative log-likelihood of 10 sampled 
random assignments. See Supplementary Note section 2 for procedure. g To 
verify that the predictive performance of the spatio-predictive model was not an 
artifact of the kernel composition procedure per se, we compared the spatio-
predictive model against a model using a composition of a spatial kernel and 
the identity matrix. The results indicate that both the spatio-predictive model’s 
components captures something important about how participants generalized. 
h We performed a model recovery analysis for our computational models, using 
their own best-fitting hyper-parameters. We were able to recover each model’s 
behavior successfully. The entries in h show each model’s posterior probability 
of generating all simulated choice data sets, assuming a uniform prior. All models 
were by far the most likely to produce their own choice data. See Supplementary 
Note section 4. a are plotted as group-level whisker-boxplots (center line, 
median; box, 25th to 75th percentiles; whiskers, 1.5*interquartile range; crosses, 
outliers). Circles and transparent lines represent individual participant data.
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Extended Data Fig. 5 | Logistic regression on participant behavior. We fit a 
multinomial logistic regression to participants’ choices in the scanner (coded 0 
for occasions when participants chose left and 1 for occasions when participants 
chose right). Factors included were the spatial distance between the probe 
stimulus and the option on the left (1) and the right (2), the absolute difference 
in value between the probe stimulus and the option on the left (3) and on the 
right (4) as well as the value of the option on the left (5) and on the right (6). 
Models were fit separately for session 2 (a) and session 3 (b) and to distance 
and value trials (on session 3 only). a In line with the instructions, the spatial 
distance between the stimulus on the left and the probe stimulus influenced 
the probability of choosing left on distance trials on day 2 (factor 1, t(47) = 
-5.75, p < 0.0001, N = 48) and vice versa for the right side (factor 2, t(47) = 6.95, 
p < 0.0001, N = 48). No such relationship could be found for the difference in 
value between options and probe stimulus or for the reward magnitude itself 
(factor 3, t(47) = -1.38, p = 0.17; factor 4, t(47) = -0.70, p = 0.49; factor 5, t(47) = 1.55, 
p = 0.13, factor 6, t(47) = -0.23, p = 0.81, N = 48). b The spatial distance between 

the two stimuli and the probe stimulus influenced which stimulus a participant 
selected on distance trials on day 3 (distance left t(47) = -3.82, p = 0.0004, N = 48, 
distance right t(47) = 3.67, N = 48, p = 0.0006, all other p > 0.1, N = 48). c On value 
trials on day 3, the smaller the difference in value between the stimulus presented 
on the left side and the probe stimulus, the more likely that a participant would 
select this side (t(47) = -2.39, p = 0.02, N = 48) and vice versa for the right side 
(t(47) = 2.91, p = 0.006, N = 48). We also found a weak effect of the spatial distance 
between the stimulus on the left side and the probe stimulus (t(47) = -2.02, p = 
0.049, N = 48), but no such effect for the right side (t(47) = -0.23, p = 0.82, N = 48). 
We found no effect for the reward magnitude associated with the two stimuli 
per se (both p > 0.1). The predictors that were significant without correcting for 
multiple comparisons are plotted in red. Statistical significance was inferred 
from the logistical regression. Data are plotted as group-level whisker-boxplots 
(center line, median; box, 25th to 75th percentiles; whiskers, most extreme 
datapoints the algorithm considers to be not outliers; crosses, outliers). Circles 
represent individual participant data. *p < 0.05, **p < 0.01, ***p < 0.001.
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Extended Data Fig. 6 | Anatomically defined regions of interest used for small-volume correction. a Mask of the hippocampal formation comprising bilateral 
hippocampus, entorhinal cortex and subiculum. b Mask of the orbitofrontal cortex. c Mask of the caudate.
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Extended Data Fig. 7 | Relationship between navigational strategies and 
hippocampal spatial and predictive map representations. a Relationship 
between the following indices of navigational strategy across participants: (1) 
Exploration duration: Total duration of exploration across all exploration 
phases on day 1. (2) Replacement error: Measure of memory acuity. The 
replacement error was computed as the average Euclidean distance between 
the true stimulus location and the drop location in the object location memory 
task. We averaged this measure across sessions (days 2 and 3, before and after 
the scanning session). (3) Wayfinding duration: Average duration of an object 
location memory trial. (4) Pausing: Relative time spent in the same position 
during the object location memory task. Pausing was calculated by dividing the 

total number of time points spent not moving by the total time spent navigating 
in a trial in the object location memory task. (5) Tortuosity: Measure of the 
ability to directly navigate to a remembered stimulus location. Tortuosity 
was computed as the ratio of the length of the entire navigational path to the 
distance between its ends. This measure equals 1 for a straight line and is infinite 
for a circle. b Relationship between replacement error and the hippocampal 
spatial enhancement effect extracted from the ROI depicted in Fig. 4a across 
participants. c Relationship between replacement error and the hippocampal 
predictive enhancement effect extracted from the ROI depicted in Fig. 4a across 
participants. All r-values reflect Pearson correlation coefficients, p-values were 
computed for two-sided tests.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 8 | The correlation between spatial and the predictive 
kernels is not related to behavioral performance measures or hippocampal 
map representations. The correlation between the spatial and the predictive 
kernel is plotted against percent correct in the choice task (a) inference error 
(b), spatial effect on choice behavior (c), predictive effect on choice behavior 

(d) and fMRI cross-stimulus enhancement effect in the hippocampus for spatial 
(e) and predictive distances (f). Parameter estimates in e and f are extracted 
from the region of interest depicted in Fig. 4a. All r-values reflect Pearson 
correlation coefficients, p-values were computed for two-sided tests. None of the 
correlations reach significance (all p > 0.2).

http://www.nature.com/natureneuroscience
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Extended Data Fig. 9 | Relation of variance inflation factors (VIFs) with 
spatial and predictive effects. a Distribution of variance inflation factors 
(VIFs) for spatial and predictive regressors in the main GLM across participants. 
Participants are sorted according to the magnitude of the VIF. The threshold 
indicates a VIF greater than 5, which indicates potentially severe correlation 
between the spatial and the predictive regressors in the GLM. b Whole-brain 
analysis showing a cross-stimulus enhancement effect in the scanning session 
after the choice task (session 3) that scales with spatial distance. Participants 

with a VIF > 5 are excluded from this analysis. For illustration purposes, voxels 
thresholded at p > .01 (uncorrected) are shown; only the right hippocampal 
cluster survives correction for multiple comparisons (peak t(47) = 3.97; p = 0.035; 
[24; -28; -16]). c Correlation between VIF and spatial fMRI effect, r = 0.12, p = 0.41, 
CI = [-0.17, 0.39], N = 48. d Correlation between VIF and predictive fMRI effect, r 
= -0.16, p = 0.29, CI = [-0.42, 0.13], N = 48. All r-values reflect Pearson correlation 
coefficients, p-values were computed for two-sided tests.
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Extended Data Fig. 10 | Supplementary modeling results. a We tested  
whether a map that adapts the weighting of the spatial and predictive kernels 
better captured participant behavior. We found evidence in the choice data  
that participants updated how they employed the maps based on its likelihood  
of generating the reward observations. See Supplementary Note section 5.  
b The trial-by-trial spatial weights, averaged over participants. Early in the choice 
task, the GP models have few observations to generalize from, and produce 
more similar predictions. Trial 1 & 2 and 11 & 12 have an equal weighting since the 
models have seen too few rewards to produce different predictions. The blue line 
and the shaded blue region correspond to mean and the 95% confidence interval 
estimated using a Loess regression model. c We fit a model using the estimated 

reward differences from the spatial and predictive maps as separate variables to 
predict participant choices. Crucially, these estimated reward differences were 
scaled by the weights we obtained on a trial by trial basis for each participant 
(average is depicted in b). This model outperformed the unweighted counterpart 
of this model by a substantial margin. d Model comparison of model learning 
the transition matrix by counting vs. models using the successor representation 
(SR) (learning rate = 0.001) to learn the transition matrix. See Supplementary 
Note section 6. e Model comparison of a model using asymmetric predictive 
relations and a model using symmetrical kernels to explain choice behavior (see 
Supplementary Note section 6).

http://www.nature.com/natureneuroscience
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Magnetic resonance imaging

Experimental design

Design type Task fMRI with event-related design

Design specifications Participants performed three blocks of a picture-viewing task in the scanner on days 2 and 3, preceded by one block of 

the choice task on day 3. The picture viewing task consisted of 144 trials, where monsters were presented in a pseudo-

random order. Each monster was presented for 2 seconds, with an inter-trial-interval drawn from a truncated 

exponential function with a mean of 3 seconds (between 2 to 5 seconds). Occasionally (on 24 trials), two monsters were 

presented simultaneously and participants had to indicate which of the two monsters was located closer in space or 

more similar in value to the monster they had seen immediately before. These trials were self-paced. Across 

participants, a block lasted in average 20:22 minutes (including self-paced trials). 

 

In the choice task on day 3, participants were presented with two monsters until they indicated their selection by 

button press (self-paced). After an inter-trial interval, the outcome associated with the selection was presented for 2 

seconds, followed by another inter-trial interval. Both intervals were again drawn from a truncated exponential function 

with a mean of 3 seconds (between 2 to 5 seconds). Participants performed 100 trials of the choice task.  

Across participants, the choice task lasted in average 17:53 minutes.

Behavioral performance measures In the scanner, we recorded button presses and response times on probe trials in the picture viewing task, as well as on 

all trials in the choice task. We assessed performance (percent correct) in the probe trial as well as in the choice task to 

test whether participants performed the task as expected. 

Acquisition

Imaging type(s) functional and structural MRI , fieldmap

Field strength 3T

Sequence & imaging parameters MRI data were acquired using a 32-channel head coil on a 3 Tesla Siemens Magnetom SkyraFit system (Siemens, 

Erlangen, Germany). fMRI scans were acquired in axial orientation using T2*-weighted gradient-echo echo planar 

imaging (GE-EPI) with multiband acceleration, sensitive to blood oxygen level-dependent (BOLD) contrast.We collected 

60 transverse slices of 2-mm thickness with an in-plane resolution of 2 x 2 mm, a multiband acceleration factor of 3, a 

repetition time of 2 s, and an echo time of 23.6 ms. Slices were tilted by 90 degrees relative to the rostro-caudal axis.  

Furthermore, a T1-weighted anatomical scan with 1 x 1 x 1 mm resolution was acquired. In addition, a whole-brain field 

map with dual echo-time images (TE1 = 5.92 ms, TE2 = 8.38 ms, resolution 2 x 2 x 2.26 mm) was obtained in order to 

measure and later correct for geometric distortions due to susceptibility-induced field inhomogeneities.

Area of acquisition whole-brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Preprocessing was performed using fmriprep 1.4.0, which is based on Nipype 1.2.0. Preprocessing stages included brain 

extraction, correction for spatial distortion by applying the fieldmap, motion correction, slice-time correction, high-pass 

filtering. Contrast images were smoothed with a FWHM of 8 mm. 

Normalization 2 T1-weighted (T1w) images were corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection, distributed with 

ANTs 2.2.066. The T1w-reference was then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh 

workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-

matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast. A T1w-reference map was 

computed after registration of 2 T1w images (after INU-correction) using mri_robust_template. Volume-based spatial 

normalization to one standard space (MNI152NLin6Asym) was then performed through nonlinear  registration with 

antsRegistration (ANTs 2.2.0), using brain-extracted versions of both T1w reference and the T1w template.

Normalization template FSL’s MNI ICBM 152 non-linear 6th Generation Asymmetric Average Brain Stereotaxic Registration Model

Noise and artifact removal A deformation field to correct for susceptibility distortions was estimated based on a field map that was co-registered to the 

BOLD reference image. Based on the estimated susceptibility distortion, an unwarped BOLD reference was calculated for a 

more accurate co-registration with the anatomical reference. BOLD runs were slice-time corrected using 3dTshift from AFNI.  

Head-motion parameters with respect to the BOLD reference (transformation matrices, and six corresponding rotation and 

translation parameters) were estimated before any spatio-predictive filtering using mcflirt. 

All general linear models (GLMs) included, in addition to the regressors of interest, frame-wise displacement, six rigid-body 

motion parameters (three translations and three rotation), six anatomical component-based noise correction components 

(aCompCorr) and four cosine regressors estimated by fmriprep as confound regressors for denoising.

Volume censoring The first five volumes were excluded from all analyses to allow for scanner calibration.
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Statistical modeling & inference

Model type and settings Univariate fMRI adaptation models. We first estimated contrasts for each subject as a first-level fixed-effects analysis and 

then combined data across subjects in a second-level random effects model.

Effect(s) tested We implemented four types of event-related general linear models (GLMs) to investigate representational similarity using 

fMRI adaptation. 

 

The first GLM modeled events during the picture viewing task and contained separate onset regressors for each of the twelve 

objects. These corresponded to the distance to the object presented immediately before the current object according to the 

spatial kernel and distance to the immediately preceding object according to the predictive kernel. Both parametric 

regressors were zscored, but not orthogonalized, so that any shared variance would be discarded. Trials where the same 

object was repeated were modeled separately and objects immediately following a choice were excluded. Furthermore, the 

GLM contained an onset regressor for the choice trials. This was accompanied by two parametric regressors, reflecting 

chosen and an unchosen distance between the two objects and the preceding object. Each of the three blocks  on each day 

were modeled separately within the same GLM.  

A seperate GLM was set up for each session (day 2 and day 3). We tested for a parametric modulation by including spatial 

and predictive relations on day 3 (after the choice task), as well as for a change in those effects from day 2 to day 3 by 

computing the difference between the two contrast images. 

 

The second, third and fourth GLM modeled events during the choice task on day 3. In both GLMs, three onset regressors 

were included, one indicating the choice period, the second one indicating feedback times and the third one corresponding 

to button presses. The choice period regressor was accompanied by two parametric modulators reflecting chosen and 

unchosen values of the objects as estimated by the winning model. Both were demeaned, but not orthogonalized. 

In the second GLM, the feedback regressor was accompanied by a spatial weight updating signal. A trial-by-trial estimate of 

the influence of the spatial map on the choices was estimated, and the demeaned trial-by-trial difference was included as a 

parametric modulator. 

 

In the third GLM, the feedback regressor was accompanied by a parametric regressor reflecting a prediction error signal 

computed based on the compositional map.  

 

In the fourth GLM, the feedback regressor was accompanied by a parametric regressor reflecting the prediction error 

difference signal. Here, the reward prediction error was estimated separately for the spatial and the predictive map, and the 

demeaned difference between the absolute prediction errors was included as a parametric regressor.  

 

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)
ROIs were defined functionally in an unbiased way based on an orthogonal contrast. 

Masks for small-volume correction were defined anatomically, and included bilateral hippocampus, 

entorhinal cortex and subiculum.

Statistic type for inference
(See Eklund et al. 2016)

Whole-brain analyses were performed voxel-wise. ROI analyses were performed on mean parameter estimates averaged 

across voxels within a given region of interest.

Correction We performed family-wise error correction. 

Effects in the hippocampal formation (our a priori ROI) are reported at a cluster-defining threshold of p < 0.001, combined 

with peak-level family-wise error (FWE) small-volume correction at p < 0.05 within an anatomically defined ROI. Results in the 

orbitofrontal cortex and striatum are reported at a cluster-defining threshold of p < 0.001 uncorrected, combined with 

anatomically defined orbitofrontal cortex and caudate masks, respectively.

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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