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The hippocampus is critically involved in both mapping space

as well as the formation of memories for events. Here, we

propose that common coding principles in the hippocampus

enable spatial, temporal and episodic representations. We

discuss recent studies employing novel cognitive tasks as well

as newly developed representational analysis techniques

which show that both spatial and mnemonic representations

can be thought of as networks of interlinked elements, be it

locations in space or events in memory. These mnemonic

networks share certain characteristics, such as plasticity and

hierarchical organisation, which enable structured

representation of information while also allowing simultaneous

assimilation of new elements. We conclude by outlining

possibilities of how neural mechanisms underlying the

formation of such networked representations can support the

organisation of interlinked information beyond time and space.
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Introduction
The hippocampal formation has a well-established role in

both episodic memory and internal representation of

space [1,2]. However, the exact nature of its involvement

is still under debate. At the heart of the debate is the type

of information represented by the hippocampal forma-

tion, and whether identical coding mechanisms underlie

the formation of these representations. According to one

influential theory, the hippocampal formation codes for a

detailed map-like representation of space, to which other
www.sciencedirect.com 
non-spatial elements of episodic memories can be bound

during encoding [2,3]. Another prominent theory posits

that both spatial and non-spatial information is repre-

sented as networks of related events in the hippocampus

[4,5,6�], in a so-called memory space. In line with this

theoretical viewpoint, computational modelling [7] as

well as experimental evidence [8] suggests that the hip-

pocampus is involved in extracting and representing

regularities that hold across episodes. Besides this, mne-

monic networks may represent conceptual [9,10�,11�,12]
and temporal information [13�,14–16] as well. We will

briefly outline commonalities in spatial and mnemonic

representations, and then discuss the mechanisms which

enable their formation. We conclude by proposing that

the representation of these networks is not restricted to

spatial, episodic and temporal information, but rather

reflects domain general computations.

Spatial representations in the hippocampal
formation
It is well established that the hippocampal formation,

which consists of the hippocampus and entorhinal cortex,

is involved in representing space [3]. More specifically,

the hippocampus contains so-called place cells, which fire

when an animal enters a particular location in the envi-

ronment [17]. On the other hand, the entorhinal cortex, a

cortical region one synapse away from the hippocampus,

contains cells that fire in response to multiple locations

which are arranged in a hexagonal pattern that tiles the

entire environment (the so-called ‘grid cells’) [1].

The same cells can represent different configurations of

locations within different environments through the pro-

cess of remapping [18,19]. Remapping can also be

induced through changes in the task or goals, and may

provide a link between coding of space and coding of

events. For example, Moita et al. showed that, after

conditioning, firing of hippocampal neurons became syn-

chronised to the onset of a conditioned stimulus, suggest-

ing that hippocampal neurons are also responsive to non-

spatial stimuli [20]. Additionally, this provides evidence

that hippocampal place cells are dynamic and can remap

due to changes in experience [18,21].

Intracranial recordings in pre-surgical epilepsy patients

exploring virtual reality (VR) environments, have con-

firmed that place [22] and grid cells [23] are also found in

human hippocampus and entorhinal cortex, respectively.

In addition to electrophysiological evidence, we have

reported systems-level fMRI responses in participants
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navigating in VR environments, which are consistent with

the population response of place cells [24] and grid cells

[25,26,27�,28�] in the rodent hippocampal formation.

Furthermore, connectivity studies in humans are indica-

tive of a highly similar subdivision of the entorhinal cortex

in rodents and humans [29,30]. These findings not only

indicate that spatial representations in humans are imple-

mented similarly to those of rats, but also that fMRI can

be a useful tool to probe such representations.

Together, the place- and grid-cell system forms the basis

of the brain’s navigation system [3]. This system seems to

be hierarchically organised with functional subdivision

along the hippocampus, corresponding to the posterior-

anterior axis in humans and dorsal–ventral axis in rodents,

respectively [31,32]. The size of place fields increases

along the long axis of the rodent hippocampus [33,34],

and the size of the grid fields, as well as the spacing

between the vertices of the grid, also increase along the

same axis of rodent mEC [1,35,36]. There are also differ-

ences in connectivity along the hippocampal long axis

[37,38]. There are several theories regarding the function

of multiple spatial scales in the hippocampal formation

[31,39]. This simultaneous representation of the same

location at multiple spatial resolutions may underlie our

ability to represent our environments along hierarchically

organised internal maps: ranging from smaller scales

[24,40,41], such as our homes, to progressively larger

scales [41,42], such as our neighbourhoods, and even

our cities (see part b of Figure 1).

Episodic memory representations
The distinction between local and global is not only

relevant for representation of space, but also for episodic

memory because it is important to have detailed memo-

ries as well as memories at a coarser mnemonic resolution.

The range of mnemonic resolutions may serve to organise

memories into hierarchical memory networks. For such

memory networks to arise, incoming information needs to

be integrated with pre-existing knowledge [43,44], or

otherwise linked with other information, which can occur

through both shared spatial context [45�,46�], and shared

temporal context [13�,14,15,45�]. Additionally, episodic

memories can be linked through shared event context

[16,47] shared narrative context [48,49�,50�], or through

shared features (e.g. people involved, types of activities,

similar objects) [9,49�,51,52�,53] while being far apart in

space and time.

Even though we cannot visualise neural representations

of memories (i.e. ‘engrams’) using noninvasive neuroim-

aging in humans, we can visualise the organisational

structure of the relationships between different mne-

monic representations and a number of recent studies

have made large strides at mapping the structure of

emerging representations in both memory [48,50�,53–
57] and space [19,28�]. These studies have used
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multivariate pattern-based analyses (such as representa-

tional similarity analysis [58] or pattern component

modelling [59]) or repetition suppression paradigms

[10�,25,57] to define the structure of internal representa-

tions of events and event elements. The analysis logic for

multivariate pattern analyses is based on the idea that

mnemonic elements which are closer together in the

memory ‘space’ would also evoke more similar patterns

of neural activity. Thus, by examining the patterns

evoked by different experimental conditions (e.g. differ-

ent events), we can visualise the distance between con-

ditions in an internal representational space.

The hypothesised memory networks are comprised of

partially overlapping events, where the nodes of the

networks consist of mnemonic elements, such as people,

objects, spatial or temporal contexts [4,6�,9,60]. In our

recent study, participants watched a movie with two

interleaved narratives in the MRI-scanner. We examined

whether overlapping event elements in those narratives

also evoke more similar internal representations of those

events. We showed that events which featured particular

characters or locations were associated with more similar

hippocampal activity patterns than other events. Those

results suggest that characters and locations in a movie

indeed form nodes of memory networks. In addition to

nodal representations, we also found evidence that hip-

pocampal representations of separate storylines from the

movie gradually diverge over time [49�]. These results

suggest that the hippocampus also represents larger

groupings of events, akin to narrative contexts, in separate

networks. These findings may relate to how different

hippocampal cell assemblies represent different spatial

contexts, whereas the process of remapping allows for

switches between the contexts as a consequence of pat-

tern separation processes [18,61].

We have also tracked the emergence of small-scale nar-

rative event networks in the posterior hippocampus in a

study where participants saw initially unrelated events

that, over the course of the experiment, became linked

through a new event. The formation of those networks of

events was triggered by insight into how previously

unrelated events fit together [48]. We showed that pat-

terns of hippocampal event representations became more

similar between non-overlapping events once they

became linked through a new event [48]. To investigate

more complex narratives, we presented participants with

multiple unrelated events which were linked into larger

narratives. Here we discovered that, in addition to the

small-scale networks in the posterior hippocampus, the

scale of these event networks increased along the long

axis of the hippocampus, with anterior hippocampus

providing coarser event representations corresponding

to the multi-event narratives. These results suggest that

memories may indeed be organised into networks of

related events, and follow a similar hierarchical
www.sciencedirect.com
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Figure 1
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John Herschel Glenn Jr. was an American
aviator, engineer, astronaut, and United
States Senator from Ohio. In 1962 he
became the first American to orbit the Earth
circling three times.
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We propose that multiple cognitive domains rely on similar mechanisms for organising information in the brain. (a) Episodic memories can be

organised as a hierarchy with an entire experience as highest hierarchical level, and more specific events within these experiences as lower levels

of the hierarchy. (b) Space can be organised as a hierarchy, with large sections of the environment as highest hierarchical level, and more detailed

sections of the environment as lower levels of the hierarchy. (c) Also conceptual knowledge can be organised as a hierarchy, with an entire

concept as highest level of the hierarchy, and more specific facts related to this concept as lower levels of the hierarchy.
organisation like space (see part a of Figure 1) [5,50�,53].
This is consistent with a global versus local spatial dis-

tinction along the hippocampal long axis as proposed in

Poppenk et al. [39]. Thus, the same neural mechanisms

that create hierarchical representation of space may also

underlie our ability to think of past events at different

memory scales, ranging from the smallest meaningful

units — such as accidentally spilling coffee during break-

fast — through progressively coarser scales — such as

having breakfast, what we did in the morning, and how

we spent the day.
www.sciencedirect.com 
Memories in time
It is well established that the hippocampus represents

temporal context [13�,14,15], and since the discovery of

phase precession of place cells [62] and hippocampal time

cells [63], it has become clear that both the hippocampus

and medial entorhinal cortex code for time as well as

space [64]. Furthermore, representations of items pre-

sented close together in predictable temporal sequences

have more similar neural patterns than items presented in

unpredictable sequences [14], suggesting that known

temporal context binds those items together. The role
Current Opinion in Behavioral Sciences 2017, 17:71–76
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of the hippocampus for integration of information across

time is also suggested by increased hippocampal activity,

positively correlated with subsequent memory, at event

offsets [65]. Interestingly, shared event context can over-

ride temporal context for item grouping [47]. Neverthe-

less, when the across-event items were judged to be closer

in time, their neural patterns were also more similar

[47,66�], perhaps suggesting that temporal and event

contexts are partially independent but can interact. Simi-

larly, we have shown that although items linked through

spatial or temporal context vary in representational simi-

larity as a function of spatial or temporal distance, these

two types of contexts also interact with each other [45�].
Comparable effects have been reported for real-life auto-

biographical memories [46�].

However, what remains to be seen is whether temporal

scales are also represented in a similar manner in the

hippocampal formation. One might predict that anterior

hippocampus in humans or the ventral hippocampus in

rodents may code for a global temporal context, while more

posterior/dorsal regions code for shorter time scales [63,64].

In the example above, we effectively described progres-

sively wider event contexts in the temporal domain, how-

ever, it is not clear whether these memory scales indeed

represent temporal context in the same way as narrative

context, the topic of the research reported in recent work

[49�,50�]. When it comes to sensory information, different

brain regions accumulate information differently across

time, with early visual cortex representing short time scales

while higher-order visual areas represented longer time

scales, while no variation with temporal scales was reported

in the hippocampus [13�]. However, even naturalistic sti-

muli used in an experimental setting do not match true

temporal scales, which leave the question about potential

hippocampal involvement in hierarchical temporal proces-

sing of episodic memory unanswered.

Networks beyond the memory domain
In this review we have discussed leading theories, compu-

tational modelling, and recent neuroimaging work that

suggest that the hippocampus does not only represent

memories of individual events but also represents mem-

ories as networks of related events [2,4,5,45�,48,49�,50�,
51,52�,67–69]. This suggests that spatial and episodic

memory rely on similar coding principles necessary for

the formation of hierarchical networks in the hippocam-

pus (Figure 1). We propose that these coding principles

may also support formation of networked representations

unrelated to events or space. A particularly interesting

question is whether these neural mechanisms, which lead

to hierarchically organised spatial and mnemonic repre-

sentations, also provide a neural metric for other types of

related information, for example the structure of concep-

tual knowledge in the brain (Figure 1). Research has

indeed shown critical involvement of the hippocampus

in the emergence of conceptual knowledge [10�,11�,12].
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However, the exact structure of knowledge representa-

tions in the brain is still under debate. Some evidence

suggests that neural mechanisms underlying navigation

through space also underlie navigation through concep-

tual space (of bird stimuli) that are defined through two

continuous dimensions [10�].

An efficient representation of knowledge needs to be

dynamic to enable flexible switching between building

new entries and integrating information into existing

structures. Furthermore, knowledge should transfer to

new situations. Thus, knowledge systems need to rely

on efficient organisational principles. One such organisa-

tional principle could be hierarchical coding which use

the same underlying neural populations and can remap

between different contexts (or concepts). Future research

needs to focus on whether representing knowledge in

network structures, similarly to how the brain represents

spatial and event maps, reflects the actual mechanisms by

which the brain can efficiently store and update knowl-

edge. Additionally, future research should address

whether the hippocampus is primarily necessary for the

formation of conceptual knowledge as hierarchical net-

works, and which other brain regions play a role in the

retrieval and long-term storage of these hierarchical net-

works [70].

Concluding remarks
In this review, we discussed hippocampal computational

mechanisms that are known to be important for repre-

senting the environment as well as representing experi-

ences. Research on space and episodic memory indicates

that the hippocampus can represent small-scale, detailed

information, and larger-scale, more general information in

parallel. All available information about the environment,

as well as our experiences, is structured into dynamic

networks that can flexibly incorporate new information

through mechanisms such as remapping. We proposed

that these computational mechanisms are combined to

enable the brain to organise space as well as episodic

memories into dynamic hierarchical structures. We con-

cluded with reviewing recent literature on the emergence

of conceptual knowledge and proposed that these compu-

tational mechanisms might not only underlie spatial and

episodic representations, but could reflect neural mecha-

nisms for organisation of interlinked information more

generally. This has the potential to significantly increase

our understanding about the coding mechanisms of the

brain for cognition in general.
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