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The hippocampus, a region that is critical for memory as well as 
internal representation of space1, differs in structure and function 
along its long axis (dorsal-ventral in rodents and posterior-anterior 
in humans)2–4. More specifically, encoded space increases in scale 
along the long axis of the hippocampus, as evidenced by an increase 
in place-field size in the rodent hippocampus from dorsal to ventral  
hippocampus5. Such a gradient may provide a mechanism that ena-
bles multiple scales of episodic memories, ranging from detailed 
individual events to more comprehensive multi-event narratives, to 
be concurrently represented along the long axis of the hippocampus 
and may underpin hierarchical memory representations6,7. However, 
whether a similar neural gradient indeed underlies organization of 
episodic memories in humans remains unclear5,8,9.

To determine whether memory scale is differently represented 
along the hippocampal long axis, we examined the emergence of new, 
multi-event representations by combining fMRI and multivoxel pat-
tern analysis with a narrative-insight task (Fig. 1 and Supplementary 
Fig. 1) (ref. 10). We used realistic, life-like videos showing individual 
events that could be integrated into narratives10 and thus experimen-
tally simulate processes involved in episodic memory formation.  
We gradually built up four separate narratives by initially presenting 
seemingly unrelated events (A, B, C and X; Fig. 1), before sequentially 
introducing two different ‘linking’ events (first L1, then L2), which 
provided insight into direct (A-B, and B-C, respectively) and inferred 
(A-C) event associations in the narratives. Memories of such narra-
tives can be recalled at different resolutions ranging from detailed 
events to more comprehensive narratives. Thus, although all of these 
events were part of the same narrative, we hypothesized that the repre-
sentation of such a multi-event narrative may differ along the long axis 
of the hippocampus depending on the ‘narrative scale’ of the ensu-
ing representation. We propose that there are different resolutions in  

which these narratives can be represented, which we refer to as small-, 
medium- and large-scale networks (Fig. 2a). Here, a representation at 
the largest narrative scale would reflect the complete narrative (large-
scale network), including all possible event associations between both 
directly (A-B and B-C) and indirectly (A-C) related events in phase 
3 of the task, and would be represented in the anterior hippocampus. 
At the smallest narrative scale, the representations would contain 
only individual event-pair associations, which would, in this context, 
reflect only the most recent directly associated event pairs (small-scale 
network) and would be represented in the posterior hippocampus. 
An intermediately scaled representation might concurrently contain 
multiple event-pair associations in phase 3 of the task, but would 
not bridge between them (medium-scale network) and would be  
represented in the mid-portion of the hippocampus.

We employed representational similarity analysis (RSA), which uses 
correlations of across-voxel activation patterns as a proxy of neural 
similarity, to quantify memory representations along the long axis 
of the hippocampus. We split the hippocampus into three regions of 
interest (ROIs): an anterior portion, a mid-portion and a posterior 
portion (Online Methods), and computed correlation coefficients 
between across-voxel activation patterns in each ROI for event pairs of 
interest (A-B, B-C and A-C) in each of the three experimental phases 
separately and averaged effects across the four runs (Online Methods 
and Supplementary Fig. 1). B-X served as a control (Supplementary 
Fig. 2). We tested the predicted interaction effect using a reduced a 
priori model, referred to as mnemonic-scaling contrast. Using this 
contrast (with contrast weights for small scale, medium scale and 
large scale: posterior: 2 −1 −1, mid-portion: −1 2 −1, anterior: −1 −1 2;  
Online Methods and Fig. 2a) in a repeated-measure ANOVA, with 
narrative scale (small, medium and large), ROI (posterior, mid-portion  
and anterior) and hemisphere (left and right) as within-subject fac-
tors, we found a significant interaction effect between narrative 
scale and ROI (F1,28 = 11, P < 0.01; Fig. 2). Thus, the small-scale  
network was indeed represented in the posterior portion, the  
medium-scale network in the mid-portion and the large-scale  
network in the anterior portion of the hippocampus. There was no 
difference between hemispheres (Supplementary Fig. 3). Additional 
control analyses revealed that these results were unlikely to be a result 
of an increasing amount of information or passing of time through-
out the task (Supplementary Fig. 2) or BOLD-signal fluctuations 
(Supplementary Fig. 4).

Post hoc analyses revealed evidence for the smallest scale of nar-
rative representation only in the posterior portion of the hippoc-
ampus (Fig. 2 and Supplementary Fig. 3), which is consistent with 
our previous report10. In addition, the medium-scale network was 
only represented in the mid-portion of the hippocampus, suggesting  
co-existence of the two directly integrated event-pair associations, 
without bridging across the inferred associations11,12. Finally,  
we found evidence for large-scale networks only in the anterior  
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portion of the hippocampus, which included the two directly  
integrated event-pair associations and a bridge across the inferred 
association, which were not directly experienced. The crucial  
difference between the large-scale network and the medium-scale  
network was that the former predicted this inferred association  
between A and C, an effect that was restricted to the anterior  
hippocampus (Supplementary Fig. 5).

These data suggest that multi-event narratives are simultaneously 
represented at multiple narrative scales along the hippocampal long 
axis, but is this gradient relevant for behavior? Following scanning, 
participants were asked to report all of the narratives they had seen 
during the experiment. Some participants remembered four unified 
narratives (12 participants), whereas others failed to integrate some 
events into unified narratives (Supplementary Fig. 6). We used this 

difference in performance to split the participants into full-integration  
and partial-integration groups, and investigated whether the gradient 
was expressed differently between those groups (Online Methods). 
We observed that the long-axis gradient was only present in the  
full-integration group (group × scale × ROI interaction: F4,104 = 2.7, 
P < 0.05; Supplementary Figs. 6 and 7). These results suggest that 
representing event associations at multiple scales simultaneously  
supports memory recall of accurate integrated narratives.

Narrative 1 Narrative 2 Narrative 3 Narrative 4
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Figure 1  Schematic overview of the narrative-insight task.  
Participants were presented with animated videos of life-like events. 
Videos of one narrative were presented in five phases. Phases 1, 2 and  
3 contained events A, B and C, and control-event X. Link-phases 1  
and 2 were interleaved, during which events L1 and L2 were presented 
and provided links between events A and B and events B and C, 
respectively. Thus, some events were directly linked (first A and B via L1, 
then B and C via L2), whereas other associations had to be inferred  
(A and C were associated via their shared association with B).  
Participants performed four runs; in each run, a different narrative  
was presented (narratives 1–4).
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Figure 2  Increasing memory scale along the 
hippocampal long axis. (a) Depiction of the three 
network scales. Contrast weights for the small-
scale network, separately for phases 1, 2 and 3 
(A-B: −1 2 −1/B-C: −1 −1 2/B-X: 2 −1 −1), the 
medium-scale network for phases 2 and 3 (A-B: 
−1 1/B-C: −1 1/A-C: 1 −1/B-X: 1 −1) and the 
large-scale network for phases 2 and 3 (A-B: −1 
1/B-C: −1 1/A-C: −1 1/B-X: 3 −3) are shown. 
Note that these three networks do not correspond 
to experimental phases. We predict a mnemonic-
scaling contrast that reflects an interaction 
between narrative scale and hippocampal ROI: 
(small, medium, large: pos: 2 −1 −1, mid: −1 2 
−1, ant: −1 −1 2). (b) Model evidence (parameter 
estimates) of left and right hippocampus  
(mean ± s.e.m.) separately for the three ROIs and  
scales (N = 29). Small-scale network: a 
representation of the narrative sensitive only 
to the directly linked events immediately after 
linking (link between event A and B replaced by 
re-linking B to C later in time) was observed in 
the posterior hippocampus only (posterior: F1,28 =  
4.1, approaching significance at +P = 0.053; 
mid-portion: F1,28 = 0.002, P = 0.96; anterior: 
F1,28 = 0.05, P = 0.82). Medium-scale network: 
increase in neural similarity between both pairs 
of directly linked events simultaneously, relative 
to inferred link and control-event X, was present 
only in the mid-hippocampus (mid-portion:  
F1,28 = 4.99, P < 0.05; anterior: F1,28 = 0.34,  
P = 0.56; posterior: F1,28 = 3.14, P = 0.09). 
Large-scale network: the anterior hippocampus 
showed a selective increase in neural similarity 
between all three events (A-B, B-C, A-C) in each 
narrative, in contrast with X (anterior: F1,28 = 8.6,  
P < 0.01; posterior: F1,28 = 1.96, P = 0.17;  
mid-portion: F1,28 = 1.63, P = 0.21). *P < 0.05.  
See also Supplementary Table 1. (c) Depiction  
of the three ROIs.
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In sum, our results provide, to the best of our knowledge, the first 
evidence in humans that event associations are represented as mem-
ory hierarchies with multiple associative networks increasing in scale 
along the hippocampal long axis: small-, medium- and large-scale 
networks were represented in posterior, mid-portion and anterior 
hippocampus, respectively. Moreover, this hierarchical memory gra-
dient was related to accurate recall or construction of integrated nar-
ratives. These results demonstrate that a mnemonic gradient underlies 
the organization of human episodic memory, which may relate to the 
gradient of the scale of encoded space5.

Previous research showed involvement of the mid-portion and 
anterior hippocampus during inference that could be driven by bridg-
ing between unseen associations or the formation of more complex 
networks, potentially with more complex networks represented  
anteriorly and less complex networks represented in mid-portion11,13 
(Supplementary Fig. 8). One possibility is that the large-scale net-
work effect in the anterior hippocampus reflects such a bridging 
function. Alternatively, it might index a complete and integrated 
representation akin to a relational memory network1,7 or cognitive 
map14. Notably, these two explanations are not mutually exclusive; 
making inferences about unseen connections is crucial for the crea-
tion of large-scale mnemonic networks. This dovetails with previous  
research that showed a functional dissociation within the rodent  
hippocampus: ventral hippocampal neurons in rats represent global 
event context15 while neurons in dorsal hippocampus encode more 
specific event information15,16.

Our results accord with previous findings on the role of the hippo
campus in memory generalization. For example, new conceptual  
knowledge17 and the formation of schemas18 require a certain 
degree of abstraction from individual events and seem to preferen-
tially involve anterior hippocampus. In contrast, smaller networks 
consisting of few elements seem to engage more posterior regions10. 
There are many different proposals about hippocampal long axis 
functional dissociation (Supplementary Fig. 9). The hippocampal  
memory gradient may provide a mechanism that enables multiple 
scales of episodic memories, ranging from individual events to more 
comprehensive multi-event narratives, to be represented by the 
brain simultaneously as different levels of mnemonic hierarchies6,7. 
An interesting question for future research is whether each level of 
the memory gradient is specific to one scale of the narrative repre-
sentation or, alternatively, whether anterior hippocampal subregions 
extend the more posterior, lower-scale narrative representations.

Although it is clear from our data that this scaled coding mecha-
nism supports memory performance, the question of how the hier-
archical representation relates to performance remains unanswered. 
One possibility is that overall memory benefits from both maintain-
ing the ability to individuate memories of separate events19 and to 
integrate multiple experiences for the purpose of generalization or 
abstraction of knowledge17,20. Representing events at multiple scales 
may provide an effective way of providing a context or schema for 

individual events, which is known to improve memory performance 
and may protect against loss of individual event details.

In conclusion, we provide evidence for a mnemonic gradient along 
the hippocampal longitudinal axis, which enables the concurrent 
representation of multiple memories in hierarchies, a finding with 
potential implications for the classroom.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Participants. 35 healthy students from the Radboud University campus  
(17 males) participated in this study. All participants were right-handed. Six par-
ticipants were excluded from further analyses: four due to excessive head motion 
(>2mm); and further two due to technical problems leading to incomplete data 
sets. The final group consisted of 29 participants (14 males, aged 18–33 years, 
mean age 22.8) who all had normal or corrected-to-normal vision. All partici-
pants gave written informed consent. The study was approved by the local ethics 
committee (CMO Arnhem-Nijmegen, the Netherlands).

Study design. Narrative-insight task (scanning). First, participants completed the 
narrative-insight task10 in the MRI scanner. Stimuli consisted of four animated 
narratives generated using The Sims 3 game (http://www.thesims3.com). Each 
narrative consisted of five separate events of 5 s in duration. Notably, participants 
were presented with only one narrative per scanning run, with four scanning 
runs in total. In addition, each run contained one control event (event X). New 
information was introduced twice in each run so that the events were gradually 
integrated into one narrative (Fig. 1).

Each run consisted of five different phases (see Fig. 1). During phase 1, 2 
and 3, participants saw 4 seemingly unrelated events: A (for example, a man 
eating soup), B (for example, a child playing on the floor), C (for example, a 
man watching TV) and X (for example, a man cooking). Between phase 1 and 2,  
a new event was presented (event L1), which linked two of the seemingly  
unrelated events: A and B (for example, the man from event A brings the child 
from event B to bed). A similar linking event (event L2) was presented between 
phases 2 and 3, and linked another two of the seemingly unrelated events:  
B and C (for example, the man from event C gives a bottle to the child from  
event B). Therefore, by the third phase, it was clear to the participants that  
events A, B and C were all part of the same narrative with direct links between A 
and B, and B and C, and an indirect link between A and C (via B). The content  
of L1 and L2 was counterbalanced between subjects. Since the X-event was  
never linked to any of the other events, it served as a control.

A pseudo-randomized order was used to present each event in phase 1, 2 and 
3, that is, all four events were shown before an event was repeated and an event 
was never shown twice in a row; this was done to avoid temporal confounds in 
the representational similarity analysis (RSA). Each event was shown six times 
per phase, with an inter-trial interval of 5.3 s on average (1, 4 or 11 s, uniform 
distribution). Thus, each original event (A, B, C and X) was presented 18 times 
in the task in total. The link-events were repeated six times as well, interspersed 
with inter-trial intervals of 12 s on average (6, 12 or 18 s, uniform distribution),  
see Supplementary Figure 1 for a schematic overview of the task structure. 
Participants finished the entire task structure for one narrative (Phase 1,  
link-event 1, Phase 2, link-event 2, Phase 3) before continuing with the same 
task structure for the following narrative.

Additionally, there was a target event (a girl riding a scooter), not related 
to any of the narratives, which was presented at random moments during the 
experiment (in 8% of all trials). Participants were instructed to press a button 
whenever they saw this target event. The purpose of the target event was to 
make sure that participants were attending the stimuli. Before the first run, 
participants were presented with an example narrative (shown in Fig. 1). All 
example events were shown twice following the same procedure as in the actual 
task narratives to ensure that participants understood the task well.

The task was presented using Presentation software (Neurobehavioral 
Systems, version 16.2). Afterwards, participants were taken out of the MRI  
scanner and completed a narrative-recall task, in which they were asked to  
write down concisely all narratives they have seen during the task (20 min). 
In this within-subject design, no blinding procedures were applied for data  
collection and analysis.

Additional behavioral experiment. Since behavioral testing was done after 
the Narrative-insight task was completed, we ran a separate behavioral experi-
ment to test participants’ memory performance immediately after the first link  
(see Supplementary Fig. 10 for more details).

MRI acquisition. All images were acquired using a 3T TIM Trio scanner 
equipped with a 32 channel head coil (Siemens, Erlangen, Germany). For the 
functional images, a 3D Echo Planar Imaging (EPI) sequence was used21, with the 
following parameters: 56 axial slices, voxel size 1.5 mm isotropic, TR = 1,888 ms,  

TE = 26 ms, flip angle = 16 deg, GRAPPA acceleration factor = 2, FOV = 222 × 
222 × 84 mm. In addition, a structural T1 sequence (MPRAGE, 1mm isotropic, 
TE = 3.03 ms, TR = 2,300 ms, flip angle = 8 deg, FOV = 256 × 256 × 192 mm) 
was acquired. A dual echo two-dimensional gradient echo sequence with voxel  
size of 3.5 × 3.5 × 2.0 mm, TR = 1,020 ms, dual echo (10 ms, 12.46 ms), flip  
angle = 90 deg, and separate magnitude and phase images was used to create a 
gradient field map to correct for distortions.

MRI data analysis. Preprocessing. Image preprocessing was performed using 
the Automatic Analysis Toolbox22, which uses custom scripts combined with 
core functions from SPM8 (http://www.fil.ion.ucl.ac.uk/spm), FreeSurfer (http://
surfer.nmr.mgh.harvard.edu/) and FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). The 
structural images were bias-corrected and de-noised using an optimized non-
local means filter to improve image quality23. The unified realign and unwarp 
procedure, as implemented in SPM8 (ref. 24), was used to correct for head motion 
and voxel displacement due to magnetic-field inhomogeneity. Co-registration of 
the functional images with the structural image was performed with the following 
procedure: the structural image was co-registered to the T1 template, and the 
mean EPI was co-registered to the EPI template. This co-registered mean EPI 
was then co-registered to the structural image. The co-registration parameters 
of the mean EPI were applied to all functional volumes. Functional images were 
corrected for physiological noise with RETROICOR25. RETROICOR uses ten 
cardiac phase regressors (fifth order fourier set), ten respiratory phase regressors 
(fifth order fourier set) and six other nuisance regressors (heart rate frequency, 
heart rate variability, raw respiration data, respiratory amplitude, respiratory fre-
quency and frequency times amplitude of respiration). The FSL brain extraction 
toolbox was used to create a skull-stripped structural image. This structural image 
was segmented into gray matter (GM), white matter (WM) and cerebro-spinal 
fluid (CSF) with SPM8 (ref. 26). Mean-intensity values at each time point were 
extracted for WM and CSF and used as nuisance regressors in the general linear 
model (GLM) analysis (see below).

Physiological measures. To correct for physiological noise (see above for 
details), heart rate was monitored with a pulse oximeter placed on the ring 
finger of the left hand using BrainAmp (ExG amplifier, Brain products GmbH). 
Participants were instructed to keep this hand as still as possible during the 
experiment. Heart rate data were inspected and corrected for movement-related 
and other measurement artifacts. Respiration was recorded at a sampling rate of 
400 Hz using the respiration belt enclosed by BrainAmp (ExG amplifier, Brain 
products GmbH).

First-level modeling. For each narrative separately, each event in phase 1, 2 and 
3 of the experiment (event A, B, C, X) was modeled with a GLM using two sepa-
rate regressors: one for the three odd trials and one for the three even trials. These 
regressors were convolved with the canonical hemodynamic response function 
(HRF). First-level modeling was performed according to the methods suggested 
previously27. In short, for each regressor of interest, a separate GLM was per-
formed containing the regressor of interest and another regressor including  
all other events of the experiment. This resulted in 96 GLMs per participant, with 
two regressors for each event (A, B, C, X) in each phase (1, 2, 3) for each narra-
tive. Additionally, each GLM included: target events, link-events (link 1 and 2),  
and button presses (all convolved with the HRF), and 6 motion parameters 
(translations of X, Y, and Z coordinates, pitch, roll, and yaw), mean signal inten-
sity in CSF, mean signal intensity in WM, and 26 regressors for physiological 
noise (see preprocessing for more detailed explanation). High pass filtering with 
a cutoff of 128 s was used to remove effects of low-frequency signal drifts.

RSA. We defined a priori regions of interest (ROIs, see below) and exam-
ined the correlation between across-voxel activation patterns of first-level beta 
estimates within these ROIs as a proxy of neural similarity28. The regressors 
modeling odd and even trials for events A, B, C and X were considered as the 
regressors of interest. We averaged across the correlations for odd and even 
trials which led to a 48 × 48 matrix of correlations (four events of interest per 
phase, three phases per narrative and four narratives). Only event-pair correla-
tions for event pairs in the same task phase were analyzed (Supplementary 
Fig. 1). These Pearson’s correlation coefficients were normalized using Fisher 
Z transformation. We then defined contrasts designed to model three different 
representational networks (Supplementary Fig. 1).

Small-scale network. We predicted that the smallest narrative scale would 
contain only representations of individual event-pair associations, which would, 
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in this context, reflect only the most recent directly associated event pairs and 
would depend on the posterior portion of the hippocampus. The contrast we 
used to test this prediction reflected an increase in A-B similarity from phase 1 
to phase 2 followed by a decrease again from phase 2 to phase 3, combined with 
an increase in B-C similarity from phase 2 to phase 3, relative to B-X similarity. 
The contrast weights for phase 1, phase 2 and phase 3 were as follows: A-B: −1 
2 −1/B-C: −1 −1 2/B-X: 2 −1 −1 (Fig. 2a).

Medium-scale network. We predicted that a medium-scale network would 
concurrently represent multiple event-pair associations, but without bridging 
between them. The contrast we used to test this prediction reflected an increase 
in A-B similarity and B-C similarity between phase 2 and phase 3, relative to A-C 
similarity and B-X similarity, with the following contrast weights for phase 2 and  
phase 3: A-B: −1 1/B-C: −1 1/A-C: 1 −1/B-X: 1 −1 (Fig. 2a).

Large-scale network. Finally, the large-scale network includes all possible event 
associations between both directly (A-B and B-C) and indirectly (A-C) related 
events. The contrast we used to test this prediction reflected an increase in 
A-B similarity, B-C similarity, and A-C similarity, between phase 2 and phase 
3 relative to B-X similarity. To determine whether this model indeed reflected 
presence of indirect associations, we looked at an increase in similarity of 
the indirect link (A-C) separately, relative to control B-X similarity, with the  
following contrast weights for phase 2 and phase 3: A-B: −1 1/B-C: −1 1/A-C: 
−1 1/B-X: 3 −3 (Fig. 2a).

Contrasts were normalized by dividing each contrast by the square-root of  
the sum-of-squares of its contrast weights, which permitted us to directly  
compare the parameter estimates of the three different models. The sample 
size was based on our previous study10 and power analysis was performed 
with G*power (dz = 1.033, alpha = 0.0001, power = 0.8). Participants were not 
grouped and therefore no randomization of participants was performed.

ROI definition. A hippocampal mask was constructed using the WFU pick-
atlas29. We predicted a gradual change along the long axis of the hippocampus,  
and therefore split the hippocampal mask in approximately equal lengths along 
the long axis (posterior portion of the hippocampus: from Y = −40 to −30; 
mid-portion of the hippocampus: from Y = −29 to −19; anterior portion of 
the hippocampus: from Y = −18 to −4). A unified segmentation procedure 
(SPM8) was used to estimate parameters relating individual anatomy to MNI 

space. The inverse normalization parameters were used to create subject specific  
(gray matter) ROIs in native space based on the MNI masks described above 
(since first-level modeling was performed in native space).

ROI analyses. A repeated-measures ANOVA with a mnemonic scaling 
contrast (that is, a reduced a priori model with predicted contrast for small-
scale, medium-scale and large-scale network, respectively: posterior: 2 −1 −1,  
mid-portion: −1 2 −1, anterior: −1 −1 2) with within-subject factors scale (small, 
medium, large), ROI (posterior portion, mid-portion, anterior portion) and 
hemisphere (left, right) was used to test the prediction of the increasing gradient 
(small-scale in posterior portion, medium-scale in mid-portion, large-scale in 
anterior portion of the hippocampus). To investigate this gradient further, we 
performed post-hoc repeated-measures ANOVAs for each model (small-scale, 
medium-scale, large-scale) and each ROI (anterior portion, mid-portion, pos-
terior portion) separately with Hemisphere (left and right) as within-subject 
factor, see above and Figure 2a for details. To examine the interaction between 
the fMRI and behavioral results, we performed a repeated-measures ANOVA 
with within-subject factors scale (small scale, medium scale and large scale), 
ROI (anterior portion, mid-portion and posterior portion) and hemisphere  
(left, right), and included ‘performance group’ as between-subjects factor based 
on the performance in the narrative-recall task (full integration of all 4 narratives 
versus partial integration).

A Supplementary Methods Checklist is available.
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