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Using functional magnetic resonance imaging, the neural correlates
of context-specific memories and invariant memories about regular-
ities across episodes were investigated. Volunteers had to learn
conjunctions between objects and positions. In an invariant learning
condition, positions were held constant, enabling subjects to learn
regularities across trials. By contrast, in a context-specific condition
object--positionconjunctionswere trial unique.Performance increase
in the invariant learning condition was paralleled by a learning-
related increase of inferior frontal gyrus activation and ventral
striatal activation and a decrease of hippocampus activation. Con-
versely, in the context-specific condition hippocampal activationwas
constant across trials. We argue that the learning-related hippo-
campal activation pattern might be due to reduced relational binding
requirements once regularities are extracted. Furthermore, we pro-
pose that the learning-related prefrontal modulation reflects the
requirement to extract and maintain regularities across trials and
the adjustment of object--position conjunctions on the basis of the ex-
tracted knowledge. Finally, our data suggest that the ventral striatum
encodes the increased predictability of spatial features as a function
of learning. Taken together, these results indicate a transition of the
relative roles of distinct brain regions during learning regularities
across multiple episodes: regularity learning is characterized by
a shift from a hippocampal to a prefrontal--striatal brain system.
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Introduction

Episodic memory refers to the ability to remember specific

events set in a spatio-temporal context (Tulving, 1983). A large

number of lesion studies (Zola et al., 2000) and single cell

recordings in animals (Fortin et al., 2002), as well as neuro-

psychological investigations (Yonelinas et al., 2002), intracra-

nial EEG data (Fernández et al., 1999) and functional imaging

data in humans (Davachi et al., 2003), suggest that the hippo-

campus as part of the medial temporal lobe memory system

plays a crucial role in encoding and retrieval of episodic mem-

ories. One influential view on hippocampal function suggests

that this brain region is critically involved in binding of different

features and events that compose episodic memories (Eichen-

baum, 2000). For example, it has been shown that hippocampal

cells in the rat bind singular conjunctions of episodic features,

such as a specific odor occurring at a particular position (Wood

et al., 1999). Furthermore, the hippocampal binding mechanism

has to prevent interference between distinct episodes. One

seminal framework (O’Reilly and Norman, 2002; Norman and

O’Reilly, 2003) proposes that the hippocampus assigns distinct

(pattern-separated) representations to different episodes to

minimize interference. In a similar vein, Shastri (2002) proposes

two levels of hippocampal binding: (i) entities occurring in the

event are bound to the roles they fill in the event and (ii) all

role--entity bindings defining an event are grouped together

in order to separate them from role--entity bindings of other

events. To exemplify the first binding type, imagine the situation

when a person paints a picture in a studio. In the representation

of this specific episode the role ‘painter’ is bound to this

particular person, the role ‘location’ is bound to studio and the

role ‘object’ is bound to picture. Given the episode that this

person watches television in his apartment, the second level of

binding is required to distinguish both episodes.

How does the brain represent repeated overlapping features

of episodes? In addition to context-specific memories about

particular episodes, individuals are able to acquire knowledge

about regularities across such specific episodes (Shanks and St

John, 1994). Several recent models have addressed this issue.

For instance, it has been assumed that this knowledge about

regularities comprises a measure of the probability that certain

types of entities are bound to a certain role (Shastri, 2002).

Moreover, Eichenbaum (2000) assumes that particular hippo-

campal neurons are specialized to represent features that

are common across many episodes. In contrast, O’Reilly and

Norman (2002) suggest that the rhinal and parahippocampal

cortices represent regularities in the environment by assigning

overlapping distributed representations to similar stimuli.

Recent neuroscientific research has begun to study the

neural correlates of learning regularities across specific epi-

sodes. For instance, studies using category learning tasks in

humans (Reber et al., 1998; Strange et al., 2001) and monkeys

(Freedman et al., 2001) have identified the lateral prefrontal

cortex (PFC) as a core structure in mediating this kind of

learning. In a study by Strange et al. (2001) subjects had to learn

abstract rules that define category membership of four-letter

strings (e.g. ‘The first two letters are always identical’). The

lateral PFC was selectively engaged following rule change.

Furthermore, Freedman et al. (2001) found category-sensitive

neurons in the monkey’s lateral PFC. After defining new cat-

egories based on the same stimulus set, the same neurons then

adaptively represented the new categories, indicating that the

lateral PFC is involved in the flexible detection of regularities in

this task.

Another line of evidence for prefrontal involvement in

learning regularities comes from artificial grammar learning

research, where subjects acquire abstract knowledge about the

rules of a finite-state grammar (Cleeremans et al., 1998). Recent

functional imaging studies have implicated the lateral PFC

in artificial grammar learning (Fletcher et al., 1999; Opitz

and Friederici, 2003). The lateral PFC also supports sequence

learning, as indicated by findings from several functional

magnetic resonance imaging (fMRI) studies (Schendan et al.,
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2003; Aizenstein et al., 2004). In these studies, subjects acquire

knowledge about a regular sequence of stimulus events. More-

over, the lateral PFC is associated with causal associative

learning (Fletcher et al., 2001) and with the detection of

abstract sequence violations (Huettel et al., 2002). It also shows

learning-related activity during arbitrary rule learning (Toni

et al., 2001; Wallis et al., 2001). Despite the different tasks used

in the above-mentioned studies, taken as a whole, these latter

findings underscore the importance of the lateral PFC in learn-

ing task-relevant regularities across different episodes, leading

to the acquisition of abstract knowledge structures. However, it

should be noted that the exact location of lateral PFC activation

varies between studies, depending on stimulus properties and

task requirements.

Using fMRI, we investigated the neural correlates of context-

specific and invariant memories, i.e. memory for invariant

features of episodes, thereby bringing together two research

fields in cognitive neuroscience, episodic memory and rule

learning. More specifically, we were interested in brain areas re-

sponsible for the acquisition of invariant memories by regularity

learning. In each trial subjects were required to learn four

sequential object--position conjunctions (see Materials and

Methods and Fig. 1). Subsequently, they had to indicate whether

or not a probe stimulus was identical to one of the four object--

position conjunctions (i.e. whether or not there is an exact

match of both stimulus features, the object and the position). In

an invariant learning condition, the positions were invariant

within a block. That is, different objects were presented at the

same four positions in each trial of an experimental block,

thereby enabling the extraction of spatial regularities and the

formation of invariant memories. In a context-specific condi-

tion, by contrast, objects and positions were variable within

experimental blocks, i.e. there were no spatial regularities

across trials, requiring the processing of unique object--position

combinations from trial to trial.

We expected enduring hippocampal activity in the context-

specific condition, since variable objects have to be bound to

variable positions in each trial of the blocks (constant binding

requirements). In the invariant learning condition, by contrast,

we hypothesized reduced hippocampal activation as a function

of time within blocks. Here, variable objects have to be bound to

invariant positions (reduced binding requirements). Moreover,

we expected a hippocampal-prefrontal shift of activity in the

invariant learning condition. More precisely, we assumed that

the lateral PFC is involved in the extraction of invariant spatial

features and the flexible adjustment of the extracted knowledge

to the requirements of the ongoing task block. Thus, we ex-

pected increased PFC activity in the invariant learning condition.

Materials and Methods

Subjects
Ten subjects participated in the study (aged 21--32 years, mean age = 27

years, six males). All subjects were right-handed with normal or cor-

rected-to-normal vision and were paid for participating. Informed

consent was obtained before scanning. All participants reported to be

in good health with no history of neurological disease. One subject had

to be excluded from further analysis due to technical problems during

fMRI acquisition.

Stimuli, Task and Design
Sixteen stimuli, which consisted of basic shapes (e.g. square, circle)

were used as stimulus materials and were presented within a 4 3 4 grid,

i.e. there were 16 possible positions. Stimuli were back projected onto

a translucent screen that participants viewed through a mirror during

fMRI acquisition.

Within one experimental trial four different stimuli were presented

sequentially at four different positions. Each stimulus was delivered for

800 ms with a 500 ms inter-stimulus interval (Fig. 1A). After a short delay

of 1300 ms a probe stimulus was presented for 2000 ms at a particular

position within the grid. Participants had to indicate whether or not the

current object--position conjunction (the probe stimulus) was identical

to one of the four object--position combinations seen before. Responses

were delivered by a button press with the right or left index finger

(2000 ms response window) by means of MR-compatible response keys.

Figure 1. Trial and block structure of the experiment. (A) Trial structure of the
experiment. Subjects learned four sequential relations among objects and positions
within a 4 3 4 matrix (grid not shown). Each stimulus was presented for 800 ms
at a particular position with an inter-stimulus interval (ISI) of 500 ms. Subsequently,
subjects were probed and had 2000 ms to determine whether the probe stimulus was
identical to one of the four object--position combinations (i.e. an exact match of both
stimulus features, the object and the position). Visual feedback was given for 500 ms.
In the present example, the probe comprised an old object at a new position, therefore
requiring a ‘new’ response. (B) Block structure of the experiment. In the invariant
learning condition, positions were invariant in each trial of an experimental block,
whereas in the context-specific condition, objects and positions were variable in each
trial. For illustration, one invariant position is highlighted by circles. One experimental
block comprised 16 trials.
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Response-to-hand mappings were counterbalanced across subjects.

Visual feedback (500 ms) was given by means of the color of a fixation

cross (green = correct, red = false, yellow = timeout), immediately after

probe offset. Probes in each block (see below) comprised 50% old (old

object at old position) and 50% new object--position conjunctions

(three equally distributed categories: old object/new position, new

object/old position and new object/new position). An exponentially

distributed intertrial interval (ITI) of 4--9 s (mean = 5 s), which was

varied in steps of 1 s was used in order to get an optimal tradeoff

between detectability and estimation efficiency of the BOLD response

(Hagberg et al., 2001; Birn et al., 2002).

After subjects had practiced 20 trials outside and ten trials in the

scanner, they performed 224 trials during the whole experiment. One

experimental session comprised seven blocks (16 trials each) in the

context-specific condition and seven blocks in the invariant learning

condition. Blocks of both conditions were presented in randomized

order with the constraint that participants had to perform at most two

blocks of the same condition in succession. Subjects were informed

about the beginning of a new block. The sequence of blocks was

balanced across subjects. In the invariant learning condition, four

positions were held constant within one experimental block whereas

in the context-specific condition, objects and positions were variable

across trials (Fig. 1B). Within one invariant learning block the temporal

order of the four positions was randomized across trials. The fixed

configuration of four positions changed from block to block in the

invariant learning condition. All other parameters were held constant

across both conditions. Before scanning, participants were instructed

that the detection and application of a rule would make the task more

easy and that this rule could change when a new block starts.

Participants were unaware of the experimental manipulation, i.e. the

existence of two different conditions.

Behavioral Analysis
To get a first estimate for learning, mean Pr values (proportion of hits --

proportion of false alarms) (Feenan and Snodgrass, 1990) were

computed. Additional analyses were conducted for hits and false alarms.

Furthermore, the false alarms were broken down by the type of false

alarm committed. In all behavioral analyses, mean performance meas-

ures in the first and the last eight trials of each block (i.e. the two halves

of the blocks) were averaged across all blocks separately for both

conditions.

Imaging Parameters
A Siemens SONATA MR scanner (Erlangen, Germany) operating at 1.5 T

with a standard circularly polarized whole head coil was employed to

acquire both T1-weighted structural images and T2*-weighted BOLD-

sensitive functional images. High-resolution (1 mm3 voxel size) struc-

tural images were acquired using a 3-D MP RAGE sequence. Functional

data were acquired using a gradient-echo EPI pulse sequence, with

the following parameters: TR = 1.8 s, TE = 50 ms, flip angle = 85�,
slice thickness = 4 mm, interslice gap = 1 mm, in-plane resolution =
3.5 3 3.5 mm, field of view = 224 mm, 20 axial slices parallel to anterior

commissure--posterior commissure plane. The first four volumes were

discarded to allow for T1 equilibration.

Data Preprocessing
FMRI time-series analysis was performed with Statistical Parametric

Mapping (SPM2; Wellcome Department of Imaging Neuroscience,

London, UK). To account for the different sampling time of the slices,

voxel time series were corrected using sinc interpolation and resampled

using the middle slice as a reference point. All functional volumes were

motion corrected. Using a least squares approach and a six-parameter

rigid body spatial transformation, realignment parameters were esti-

mated. According to these determined parameters all volumes were

resliced to the first volume using B-spline interpolation. After coregis-

tering anatomical images to the mean functional image, the resulting

images were normalized (Ashburner and Friston, 1999) to the standard

T1 template based on the MNI reference brain (Cocosco et al., 1997),

using a 12-parameter affine transformation along with a nonlinear

transformation (cosine basis functions). Based on the determined

parameters the normalization algorithm was then applied to the func-

tional volumes. Finally, the normalized images were resampled into

2 mm isotropic voxels and spatially smoothed with an isotropic 8 mm

full-width half-maximum Gaussian kernel.

Basic Statistical Analysis
Statistical analysis was performed in two stages in a mixed-effects model.

For each subject, neural activity in each trial for both conditions was

modeled by convolving a stimulus function, representing the onset of

each sample phase with a canonical hemodynamic response function

(HRF) (Friston et al., 1998) (duration = 4.7 s), to cover the whole sample

phase (epoch-related). The sample phase comprised the four sequential

object--position conjunctions in each trial, including the inter-stimulus

interval. To increase the power of our model, we additionally modeled

neural activity for the probe stimulus in each trial for both conditions,

using an event-related canonical HRF. For this purpose, an event train

of d-functions, time-locked to the onset of each probe stimulus was

convolved with the canonical HRF. We assumed that learning-related

neural activity should be optimally reflected in the sample phase, when

subjects encode and maintain four object--position conjunctions. Thus,

all analyses were restricted to the sample phase. The time series in each

voxel were high-pass filtered to 1/128 Hz to remove low-frequency

noise and proportionally scaled to a grand mean of 100 over voxels to

remove effects due to global intensity fluctuations. Parameters for each

covariate were estimated by a least-mean-squares fit of the model to

the time series using a subject-specific fixed-effects model within the

general linear model. During the estimation procedure serial correla-

tions were estimated with a restricted maximum likelihood (ReML)

algorithm using an AR(1) plus white noise model. In SPM2, the ReML

estimates (hyperparameters) are then used to correct for non-sphericity

(Friston et al., 2002). Parameter estimates for the linear contrasts of

interest (i.e. the direct contrasts of the invariant learning condition

versus the context-specific condition and vice versa) entered into

a second-level analysis treating subject as a random effect, using a one-

sample t-test against a contrast value of zero at each voxel (Holmes and

Friston, 1998). MNI-coordinates (Cocosco et al., 1997) of all reported

activations have been transformed to the canonical Talairach space

(Talairach and Tournoux, 1988). In the direct contrasts between both

conditions, statistical parametric maps (SPMs) were thresholded at P <

0.0005, uncorrected for multiple comparisons. In addition, an extent

threshold of 5 voxels was used to emphasize coherent activation.

Learning-related Modeling
In a second analysis step, we conducted a condition 3 time interaction

analysis and two parametric fMRI analyses to directly investigate

learning-related modulations of brain activity. To get an initial estimate

of a differential learning-related activation pattern in both conditions,

we conducted a 2 3 2 analysis of variance (ANOVA) with the factors

condition and time [mean blood oxygen level-dependent (BOLD)

activity for trials 1--8 and 9--16 of the experimental blocks, separately

for both conditions]. This analysis was restricted to the brain regions

showing a main effect of condition in the basic statistical analysis (P <

0.05, small volume corrected; see below). Given our a-priori hypotheses

with respect to the hippocampus, this analysis was also conducted for

both hippocampi (P < 0.05, small volume corrected; see below).

In two subsequent parametric fMRI analyses, we examined learning-

related activation pattern in more detail by incorporating subjects’

individual performance and learning functions on a trial-by-trial level

into the imaging analysis. In the first parametric analysis, we tested our

a-priori hypotheses that (i) the hippocampus shows a learning-related

decrease in activity in the invariant learning condition and (ii) constant

activity in the context-specific condition. In this analysis subject-

specific time series of each experimental block were weighted with

subjects’ behavioral performance measure. To increase the sampling

rate of the learning functions, mean Pr values for four consecutive trials

in each block (i.e. trials 1--4, 5--8, 9--12 and 13--16, respectively; see

Fig. 4D, upper panel, for examples) were averaged across all blocks,

separately for both conditions, resulting in four time bins for each

subject and condition. The model functions were derived from each

individual’s learning curve by fitting a logarithmic function y = a 3 ln(ti)
+ b separately for both conditions (see Fig. 4D, lower panel

for examples). The two original condition-specific stimulus functions
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were multiplied by these parametric modulation functions, leading to

additional regressors (Büchel et al., 1998), either reflecting learning-

related increase or decrease in the invariant learning condition or

continuously enduring hemodynamic activity in the context-specific

condition. Linear contrasts of the parameter estimates for each re-

gressor were calculated for each subject and brought to the second-

level random effects analysis. To test our specific hypotheses about the

differential hippocampal involvement in both conditions, we performed

a conjunction analysis (Friston et al., 1999) across subjects. Here, we

used linear contrasts of the parameter estimates for the respective

regressors in both conditions, i.e. the regressor including a decreasing

model function in the invariant learning condition and the regressor

including a constant model function in the context-specific condition.

This analysis was restricted to the hippocampus proper. Hippocampal

regions of interest were determined a priori according to a detailed

neuroanatomy atlas (Warner, 2001). An appropriate mask image was

generated using the software package MRIcro. Statistical tests were

corrected for multiple comparisons (P < 0.05, small volume corrected)

(Worsley et al., 1996).

In a second parametric analysis, we examined whether brain regions

showing a main effect of condition in the direct comparisons also

exhibit learning-related changes of activation in the invariant learning

condition. Thus, learning-related increase and decrease of activity in this

condition was modeled. In this analysis, SPMs from the invariant-learning

versus context-specific contrast and the context-specific versus

invariant-learning contrast served as mask images, respectively (P <

0.05, small volume corrected).

Results

Behavioral Results

Figure 2A shows mean Pr values (Feenan and Snodgrass,

1990), separately for the context-specific and invariant learning

condition, collapsed across experimental blocks and subjects.

In the invariant learning condition, Pr values increased within

task blocks. This was not the case in the context-specific condi-

tion. This observation was confirmed by a two-way repeated-

measures ANOVA with the factors condition (context-specific

versus invariant learning) and time (two levels: mean Pr values

for eight consecutive trials each). This analysis revealed a main

effect of time [F (1,8) = 6.88, P < 0.05] and a condition 3 time

interaction [F (1,8) = 24.66, P < 0.005]. Additional one-way

ANOVAs separately for both conditions showed a significant

effect of time in the invariant learning condition [F (1,8) = 20.58,

P < 0.005] but not in the context-specific condition [F (1,8) =
5.27, P < 0.1].

To elucidate in more detail the learning mechanisms and

performance pattern in both condition, additional analyses were

conducted separately for the mean hit and false alarm rates

(Fig. 2B,C). There was a condition 3 time interaction for hits

[F (1,8) = 7.04, P < 0.05] and for false alarms [F (1,8) = 5.85, P <

0.05]. Furthermore, a marginally significant increase of hits

[F (1,8) = 3.48, P < 0.1] and a decrease of false alarms [F (1,8) =
6.83, P < 0.05] within blocks could be observed in the invariant

learning condition. By contrast, in the context-specific condi-

tion, mean hit rate [F (1,8) = 1.27, P > 0.2] and mean false alarm

rate [F (1,8) < 1] remained constant within blocks.

In our task, subjects can commit a false positive response by

classifying as old an old object at a new position, a new object at

an old position and a new object at a new position. Given this,

we assumed that learning, i.e. the extraction of spatial regular-

ities, should be most clearly revealed by a reduction of false

alarms to trials that include new positions, since subjects could

reject these probes solely on the basis of their knowledge about

the invariant positions. To examine this, the false alarms in both

conditions were broken down by the three types of errors

described above (Fig. 2D--F). These supplementary analyses

revealed a main effect of condition [F (1,8) = 38.95, P < 0.001]

and a condition 3 time interaction [F (1,8) = 7.69, P < 0.05] for

false alarms to old objects at new positions (Fig. 2D), but neither

for false alarms to new objects at old positions [main effect:

F (1,8) = 1.31, P > 0.2; interaction: F (1,8) < 1; Fig. 2E] nor for

false alarms to new objects at new positions [main effect and

Figure 2. Behavioral results. Performance measures þ� SEM) are plotted as a function of time within experimental blocks for the invariant learning (solid) and context-specific
condition (dashed), collapsed across all blocks and subjects. (A) Mean Pr values, (B) mean hit rate, (C) mean false alarm rate. (D--F) The false alarms are further divided in three
categories, depending on the specific probe type, i.e. the mean false alarm rate for probes including (D) an old object at a new position, (E) a new object at an old position and (F)
a new object at a new position, respectively. The performance measure was averaged across trials 1--8 and 9--16, respectively.
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interaction: F (1,8) = 2.29, P > 0.1; Fig. 2F]. Note that the latter

type of errors was rarely committed, causing this effect to be

non-significant (floor-effect). Moreover, an analysis separately

for both conditions revealed that the false alarm rate to old

objects at new positions decreased in the invariant learning

condition [F (1,8) = 10.36, P < 0.05] but not in the context-

specific condition [F (1,8) = 2.72, P > 0.1]. This differential

modulation of the false alarm rates in the invariant learning

condition confirms our initial hypothesis that learning takes

place in the form of strengthening the representation of

invariant positions within blocks.

Imaging Results: Basic Contrasts

In a first step, we calculated direct contrasts between the

context-specific and the invariant learning condition (Fig. 3,

Table 1). In the direct comparisons, only regions that survived

a statistical threshold of P < 0.0005 (uncorrected) were con-

sidered significant. Regions that exhibited greater activation for

invariant learning trials than for context-specific trials were

considered to be sensitive for the formation of invariant mem-

ories. Several prefrontal regions, including the inferior portion

of the left middle frontal gyrus [Brodmann area (BA) 46; peak

Talairach coordinates x, y, z : –40, 30, 24], the opercular part of

the right inferior frontal gyrus (BA 45; 40, 28, 19), the triangular

part of the left inferior frontal gyrus (BA 45; –57, 20, 17) and the

right inferior frontal sulcus (BA 9; 36, 21, 25) were activated in

the invariant learning relative to the context-specific condition.

In addition to this lateral prefrontal pattern, this contrast also

revealed activation in the right ventral striatum (26, 2, –7), the

right inferior parietal lobule (BA 40; 51, –42, 44 / 42, –56, 45) and

the right lingual gyrus (BA 30; 22, –47, 2). The comparison be-

tween the context-specific and the invariant learning condition

revealed enhanced activity in the left posterior cingulate cortex

(BA 31; –20, –33, 48) and along the right superior occipital sulcus

(BA 19; center activity: 34, –74, 28). All experimental trials

were included in this analysis. When solely considering correct

responses in the analysis, a highly similar pattern for both con-

trasts could be observed, with the exception that the left inferior

parietal lobule additionally showed a significant activation in

the contrast between the invariant learning condition and the

context-specific condition (see Table 2 for details).

Imaging Results: Learning-Related Activity

In accordance with the behavioral analysis, we conducted a 2 3

2 ANOVA with the factors condition and time (BOLD activity

for trials 1--8 and trials 9--16 of the experimental blocks, separ-

ately for both conditions) to get a first estimate of differential

learning-related activation pattern in both conditions. This ana-

lysis was restricted to the hippocampus and to the activation

foci found in the direct comparisons between conditions (see

Materials and Methods). A subset of the regions showing a main

effect of condition in the direct comparisons also exhibited

a significant condition 3 time interaction, including the tri-

angular part of the left inferior frontal gyrus (–57, 20, 17; zmax =
1.75), the left posterior cingulate cortex (–16, –29, 46; zmax =
2.70), the right inferior parietal lobule (48, –46, 48; zmax = 3.12)

and the right lingual gyrus (24, –47, 1; zmax = 2.48). Moreover,

this analysis revealed a significant interaction between condi-

tion and time in the right (24, –8, –10; zmax = 2.70 / 38, –20, –14;

Figure 3. Direct comparisons between conditions. SPMs superimposed on coronal sections of the MNI T1-weighted MRI template showing activated regions for the contrasts
comparing the invariant learning and the context-specific condition. Talairach y-coordinate is given below each image, respectively. (A) Trials in the invariant learning condition
revealed greater hemodynamic activity than trials in the context-specific condition in the left middle frontal gyrus (MFG), the opercular part of the right inferior frontal gyrus (IFG), the
triangular part of the left IFG, the right inferior frontal sulcus (IFS), the right ventral striatum (VS), the right inferior parietal lobule (IPL) and the right lingual gyrus (LG). (B) The left
posterior cingulate cortex (PCC) and the right superior occipital sulcus (SOS) showed stronger BOLD responses in the context-specific condition as compared with the invariant
learning condition (for further details, see Table 1).
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zmax = 2.53) and left (–18, –10, –13; zmax = 3.41 / – 26, –18, –16;

zmax = 4.46) hippocampus.

On the basis of the interaction between condition and time,

suggesting a differential involvement of several brain regions in

both conditions as a function of time, we further examined

learning-related activation pattern in more detail by means of

parametric fMRI analyses. For this purpose we weighted the

fMRI time series separately for both conditions with individually

fitted logarithmic learning functions. Learning-related changes

in hemodynamic activation could thereby be modeled explicitly

(see Materials and Methods). All individual learning functions

were well approximated by a logarithmic function [mean

functions and goodness of fit: y = 0.10 3 ln(ti) + 0.67; R2 =
0.72 (invariant learning condition); y = –0.07 3 ln(ti) + 0.72; R2 =
0.71 (context-specific condition)]. In a first parametric analysis,

we tested our a-priori hypotheses about a differential learning-

related hippocampal activation pattern for both conditions. For

this purpose, we conducted the following conjunction analysis

(Friston et al., 1999), restricted to both hippocampi (P < 0.05,

small volume corrected): learning-related decrease in the in-

variant learning condition and constant activity in the context-

specific condition. This conjunction analysis revealed an acti-

vation of the right hippocampus (34, –12, –16; Fig. 4A; Table 3).

As apparent from Figure 4A (middle panel), the hippocampus

showed continuously enduring activation within blocks of

the context-specific condition. To further control whether the

hippocampus was responsive across all trials in the context-

specific condition, we conducted a t-test against the null-

hypothesis of no activation for the peak BOLD response of

the hippocampus. For each subject, the peak BOLD response

was determined for each trial of the blocks and subsequently

averaged across all trials. This analysis revealed a significant

activation of the hippocampus [t(8) = 3.84, P < 0.01].

A second parametric analysis tested whether brain regions

showing a main effect of condition in the direct comparisons

also exhibit a learning-related activation pattern in the invariant

learning condition. Thus, this analysis was restricted to the

activation foci found in the direct comparisons between

conditions (P < 0.05, small volume corrected; see Methods).

The triangular part of the left inferior frontal gyrus (BA 45; –53,

24, 19) and the right ventral striatum (28, 2, –7) showed

learning-related increases of activity within the experimental

blocks (Fig. 4B). By contrast, right inferior parietal lobule (BA

40; 38, –56, 47) activity decreased as a function of learning

within blocks (Fig. 4C). Moreover, a learning-related decrease of

activation could be observed in the superior occipital sulcus (BA

19; 34, –76, 26). None of the additional regions found in

the direct comparison between both conditions exhibited a

learning-related activation pattern in this analysis.

Discussion

Our behavioral data show that subjects learned spatial regular-

ities across trials and did benefit from this knowledge in the

invariant learning condition. This was reflected in increased Pr

values, due to increasing correct detection and decreasing false

alarm behavior relative to the context-specific condition during

the time-course of experimental blocks. The data also indicate

that learning is based on reducing false alarm responses to those

probes that include new positions. Here, subjects benefit most

of all from learning spatial regularities, probably based on an

enhanced selectivity of the spatial representations (Yeshurun

and Carrasco, 1998).

The fMRI results point to dissociable neural correlates for

context-specific and invariant memories. In the parametric

analysis the right hippocampus showed continuously enduring

activity in the context-specific condition, in which subjects

encode variable objects at variable positions. Importantly, when

subjects benefit from learning invariant spatial features across

trials, right hippocampal activity decreased in the invariant learn-

ing condition. Furthermore, we could dissociate a prefrontal-

striatal-parietal network supporting learning regularities. The

lateral prefrontal cortex and the ventral striatum showed a

learning related increase of activity, whereas activity in the

inferior parietal lobule decreased as a function of learning.

Hippocampus and Pattern-separated, Relational
Representation

It has been proposed that the hippocampus uses sparse,

pattern-separated representations to encode arbitrary conjunc-

tions or bindings of features defining an episode (O’Reilly

and Norman, 2002). This mechanism results in highly distinct,

Table 1
fMRI activation foci: direct contrasts (all trials)

Region BA Hemisphere Talairach coordinates Z-score

x y z

Invariant learning [ context-specific
Inferior middle frontal gyrus 46 L �40 30 24 3.66
Inferior frontal gyrus (opercular part) 45 R 40 28 19 3.50
Inferior frontal gyrus (triangular part) 45 L �57 20 17 3.86
Inferior frontal sulcus 9 R 36 21 25 4.30
Ventral striatum -- R 26 2 �7 3.67
Inferior parietal lobule 40 R 51 �42 44 3.58

40 R 42 �56 45 4.02
Lingual gyrus 30 R 22 �47 2 3.81

Context-specific [ invariant learning
Posterior cingulate cortex 31 L �20 �33 48 4.11
Superior occipital sulcus 19 R 34 �74 28 3.76

Regions activated in the direct contrasts between the context-specific and the invariant learning

condition (from anterior to posterior), described in terms of Brodmann area (BA), hemisphere

(L, left; R, right), Talairach coordinates (mm; transformed from the MNI-space) and peak Z-score.

All regions pass the statistical threshold of P\ 0.0005 (uncorrected). All trials were included in

this analysis.

Table 2
fMRI activation foci: direct contrasts (correct trials)

Region BA Hemisphere Talairach coordinates Z-score

x y z

Invariant learning [ context-specific
Inferior middle frontal gyrus 46 L �40 28 24 3.75
Inferior frontal gyrus (opercular part) 45 R 40 28 19 3.66
Inferior frontal gyrus (triangular part) 45 L �55 26 19 3.88
Inferior frontal sulcus 9 R 36 21 25 4.22
Ventral striatum -- R 28 4 �5 3.83
Inferior parietal lobule 40 R 53 �41 44 3.45

40 L �42 �45 41 3.77
40 R 40 �56 45 4.10

Lingual gyrus 30 R 22 �47 2 3.82
Context-specific [ invariant learning

Posterior cingulate cortex 31 L �18 �35 46 4.06
Superior occipital sulcus 19 R 34 �74 28 3.70

Regions activated in the direct contrasts between the context-specific and invariant learning

condition. Only correct trials were included in this analysis (for further details, see Table 1

legend).
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non-overlapping representations of episodes and minimizes

interference between episodes. In a similar vein, Eichenbaum

(2000) argues that the hippocampus is responsible for binding

multiple inputs, and by this optimally represents the relations

between temporally and spatially disparate features comprising

a complex episode (relational memory framework) (Cohen and

Eichenbaum, 1993; Cohen et al., 1999). Accordingly, in our task

four different objects have to be bound to four different

Figure 4. Brain regions showing a learning-related activation pattern. (A) Results of the conjunction analysis. The right hippocampus (HC) showed constant activity in the context-
specific condition and decreased activity during the time course of learning in the invariant learning condition. (B) Regions demonstrating increased learning-related activity in the
invariant learning condition included the opercular part of the left IFG and the right VS. (C) Furthermore, the parametric analysis revealed a learning-related activation decrease in the
right IPL. Time courses of the best-fitting parametric BOLD response relative to grand mean over voxels, time-locked to the sample phase onset against post-stimulus time (PST),
are plotted across trials of the experimental blocks. The response is collapsed across experimental blocks and averaged across participants. For the conjunction analysis (A),
parametric BOLD responses are plotted for the hippocampus separately for the context-specific (middle panel) and the invariant learning condition (right panel). For (B) and (C),
parametric responses are depicted on the left and right side of the structural scan, respectively (for further details, see Table 3). (D) Examples of learning functions (upper panel) and
model functions (lower panel) from three selected subjects (black, red, blue), separately for the invariant learning (solid) and the context-specific condition (dashed). Learning
functions were derived by averaging mean Pr values for four consecutive trials across all blocks separately for both conditions. The model functions were derived from the individual
learning functions by fitting a logarithmic function y 5 a 3 ln(ti) þ b.
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positions and these four object--position bindings have further

to be bound together in each trial to provide a complete,

relational representation of each episode. In accordance with

both frameworks (Eichenbaum, 2000; O’Reilly and Norman,

2002), in the present experiment the hippocampus was acti-

vated continuously across experimental blocks in the context-

specific condition. Here, each trial comprised a unique episode,

i.e. the probability of each possible object--position conjunction

was constant across trials, resulting in highly variable feature

conjunctions in each trial. Consequently, constant hippocampal

relational binding operations were required to encode unique

episodes into separated memory representations.

In the invariant learning condition, by contrast, there were

four invariant positions in each block. Here, the relational

binding requirements of each episode decreased during the

time-course of each block, since the probability for specific

object--position conjunctions was substantially increased (e.g.

a specific object presented at one of the four positions held

constant in a block), whereas the probability for other object--

position conjunctions was reduced to zero (e.g. an object

presented at one of the remaining 12 positions never occurring

in one block). Thus, invariant positions in object--position

conjunctions might cause a reduced relational representation

of the current episode. As the objects can be bound to the same

positions within a block, learning presumably results from

facilitated object--position binding. The decreasing hippocam-

pal activation in the invariant learning condition may thus

reflect these lower relational binding requirements. It is im-

portant to note that in the invariant learning condition a singular

object--position conjunction is presented only once in each

block, i.e. is not repeated within one block. By this, our exper-

imental manipulation did not entail the repetition of a specific

object--position conjunction. Thus, the decrease of hippocam-

pal activation cannot be attributed to a higher amount of repe-

tition of object--position conjunctions in the invariant learning

condition.

This line of arguments is confirmed by previously observed

decreased hippocampal activity during the time-course of

probabilistic cue--outcome learning (Poldrack et al., 2001),

associative learning (Zeineh et al., 2003), artificial grammar

learning (Opitz and Friederici, 2003) and sequence learning

(Grafton et al., 1995; Schendan et al., 2003). For instance,

Schendan et al. (2003) showed a learning-related modulation of

hippocampal activity using a serial reaction time task. Subjects

learned complex sequential structures of stimuli and responses.

The authors observed activation of the hippocampus that was

more pronounced during the initial phases of learning than in

the final phase. In line with the relational memory account

(Cohen and Eichenbaum, 1993; Eichenbaum, 2000), Schendan

et al. (2003) argue that the hippocampus is involved in the

acquisition of higher-order associations, i.e. relations among

temporally discontiguous events, most pronounced at the

beginning of learning. It is conceivable that in the Schendan

et al. Study, as well as in our study, relational representations of

episodes get reduced due to overlapping episodic features and

by this less hippocampal relational processing is required.

Moreover, the hippocampal activation was right-lateralized

in the present study. Numerous studies have demonstrated that

the hippocampus mediates the processing of spatial relation-

ships (Eichenbaum et al., 1999; Burgess et al., 2002). Neuro-

imaging and neuropsychological studies suggest a preferential

role of the right hippocampus in spatial memory (Smith

and Milner, 1981; Maguire et al., 2003) and spatial navigation

(Grön et al., 2000; Maguire et al., 2000; Burgess et al., 2001).

Consistent with these findings, the present right hippocampal

activation decrease in the invariant learning condition may

reflect the lower spatial processing requirements as compared

with the context-specific condition, i.e. the processing of

invariant spatial features from trial to trial. Given the small set

of 16 objects and 16 positions used in the present study, it could

be argued that learning was not restricted to the invariant

learning condition but also took place in the context-specific

condition. To test this hypothesis, we conducted a post-hoc

analysis, contrasting mean performance (Pr values) in blocks 1--

3 with mean performance in blocks 5--7 for the context-specific

condition. This analysis revealed no differences between both

blocks [t(8) < 1; mean Pr : 0.65 ± 0.05 (block 1--3); 0.66 ± 0.06

(block 5--7)]. Furthermore, in an additional fMRI analysis we

contrasted hemodynamic responses in block 1--3 with block

5--7 (and vice versa) in the context-specific condition. Hippo-

campal activation did not differ significantly between the first

and the last blocks (P < 0.05, small-volume corrected). These

supplementary analyses suggest that learning was absent or

negligible and hippocampal activation did not change across

blocks in the context-specific condition.

Brain regions exhibiting greater activity for context-specific

as compared with invariant learning trials include the posterior

cingulate cortex (PCC) and the superior occipital sulcus (SOS).

The PCC is part of the extended hippocampal diencephalic

system (Aggleton and Brown, 1999). The integrity of this system

is a prerequisite for successful memory operations. However,

the precise function of the PCC is an issue of current debate.

Furthermore, the SOS as part of the dorsal visual processing

stream (Ungerleider and Mishkin, 1982) might be recruited due

to processing variable spatial features from trial to trial in the

context-specific relative to the invariant learning condition. In

accordance with this view, SOS activity decreased during the

time course of experimental blocks in the invariant learning

condition, since spatial processing requirements get reduced.

Lateral Prefrontal Cortex and Learning Regularities

As predicted, lateral prefrontal regions were activated in the

invariant learning relative to the context-specific condition.

Moreover, the triangular part of the left inferior frontal gyrus

showed an activation increase as a function of learning in the

invariant learning condition. Based on these results, we propose

Table 3
fMRI activation foci: learning-related activity

Region BA Hemisphere Talairach coordinates Z-score

x y z

(1) Conjunction analysis
Hippocampus -- R 34 �12 �16 1.73

(2) Learning-related increase
Inferior frontal gyrus (triangular part) 45 L �53 24 19 2.06
Ventral striatum -- R 28 2 �7 1.88

(3) Learning-related decrease
Inferior parietal lobule 40 R 38 �56 47 2.37
Superior occipital sulcus 19 R 34 �76 26 2.34

Regions showing a learning-related activation pattern. (1) Conjunction analysis: learning-related

decrease (invariant learning condition) and constant activity (context-specific condition). (2--3)

Regions with a learning-related (2) increase and (3) decrease in the invariant learning condition.

SPMs were thresholded at P\ 0.05 (corrected), using small volume corrections (for further

details, see Table 1 legend).
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that the increase of lateral PFC activity in the invariant learning

condition reflects (i) the extraction and the maintenance of the

invariant positions across trials and (ii) the adjustment of

object--position conjunctions in each trial on the basis of

the extracted information, resulting in an efficient encoding

strategy.

First, we argue that the lateral PFC is involved in extracting

task-relevant invariant spatial features during the initial trials.

After regularities are successfully extracted, these regularities

have to be actively maintained during the whole experimental

block. This view receives support from numerous studies

demonstrating that the lateral PFC plays a crucial role in active

maintenance of information against distraction (Miller et al.,

1996; Sakai et al., 2002) and in suppressing interference from

varying sources (Bunge et al., 2001; Mecklinger et al., 2003).

These processes are important prerequisites for rule extraction

and formation, and might therefore mediate rule-based learning

(Ashby and Ell, 2001).

Secondly, during the time-course of the experimental

blocks, object--position conjunctions could be reorganized in

light of the representations of the extracted regularities. Sup-

porting evidence is provided by a recent fMRI study (Bor et al.,

2003). When subjects could integrate items into higher-level

chunks, performance as well as lateral prefrontal activity in-

creased. In the same vein, lateral prefrontal regions showed

increased activity, when information is stored in a bound, rather

than in a separated representation (Prabhakaran et al., 2000). In

both studies, subjects benefit from a reorganization of items

during encoding. Lateral PFC involvement has been consistently

found during episodic memory tasks (Wagner, 2002). The lateral

PFC has been posited to subserve specific control operations

during memory encoding, like the reorganization, evaluation

and manipulation of the items to be memorized (Fletcher and

Henson, 2001; Simons and Spiers, 2003). In a recent computa-

tional model of prefrontal memory control, Becker and Lim

(2003) could show that the PFC represents internal mnemonic

codes, rapidly adjusted to current task requirements. Further-

more, Becker and Lim’s simulations reveal that these mnemonic

codes evolve via reinforcement mechanisms during the time-

course of the experiment. In accordance with these accounts,

we propose that the PFC is involved in the adjustment of

representations of incoming object--position conjunctions on

the basis of the extracted regularities, i.e. the knowledge of four

invariant positions in one block. It could be argued that the

extracted regularities are represented as an internal mnemonic

code (Becker and Lim, 2003). In light of this mnemonic code,

object--position conjunctions are encoded more efficiently, as

reflected in increased PFC activity in the invariant learning as

compared with the context-specific condition. Moreover, the

learning-related increase of lateral PFC activity indicates that

this process evolves across trials and by this entails increased

task performance in the invariant learning condition. Taken

together, the dynamic PFC activation pattern seems to reflect

the implementation of an efficient encoding strategy in the face

of task-relevant regularities. These data underscore the special

importance of the lateral prefrontal cortex during regularity

learning.

Beyond the lateral prefrontal cortex, right ventral striatum

activity increased as a function of learning. The ventral striatum

as part of the basal ganglia has been associated with habit learn-

ing, the gradual acquisition of stimulus--stimulus and stimulus--

response associations (Jog et al., 1999; Packard and Knowlton,

2002), e.g. during probabilistic classification learning (Knowl-

ton et al., 1996; Poldrack et al., 2001) and sequence learning

(Willingham et al., 2002; Schendan et al., 2003). It has been

proposed that the striatum and the hippocampus comprise

interactive memory systems, specialized for distinct memory

processes, namely relational binding of features defining epi-

sodes (hippocampus) and the acquisition of stimulus--stimulus

associations (striatum), respectively (Poldrack et al., 2001;

Packard and Knowlton, 2002; Poldrack and Packard, 2003).

This is in accordance with the complementary learning-

related activation pattern observed in the hippocampus and

the ventral striatum, respectively. Hippocampal activity de-

creased, whereas ventral striatal activity increased as a function

of learning.

Another line of neurophysiological (Waelti et al., 2001;

Lauwereyns et al., 2002) and neuroimaging research (McClure

et al., 2003; O’Doherty et al., 2003) suggests that the meso-

limbic dopamine system and its main target areas, especially

the striatum, play a pivotal role during classical conditioning.

Based on assumptions of formal reinforcement learning theories

(Rescorla and Wagner, 1972; Sutton and Barto, 1990), it has

been proposed that these brain regions represent predictions

of future reward delivery and by this drive learning of asso-

ciations between stimuli (Schultz, 2002). In accordance with

these views, it is conceivable that the observed learning-related

activation of the right ventral striatum might reflect the

processing of increased predictability of spatial features during

the time-course of learning. It could further be argued that

these modified expectations of positions serve as internal re-

inforcement signals supporting regularity learning (Koechlin

et al., 2002; Schultz, 2002). Moreover, it has been proposed that

mesolimbic reinforcement signals provided to the PFC play

a crucial role in maintaining and updating of prefrontal memory

representations (Miller, 2000; Cohen et al., 2002). Thus, it

could be speculated that bottom-up reinforcement signals

from mesolimbic and striatal dopamine neurons, sensitive to

the predictability of spatial features might modulate processing

in higher-level brain structures like the PFC (Schultz, 2002).

On the basis of these reinforcement signals, the PFC might

implement an efficient encoding strategy (Becker and Lim,

2003).

The right inferior parietal lobule (IPL) showed stronger

BOLD responses in the invariant learning as compared with

the context-specific condition. However, in contrast to the PFC,

the IPL activation decreased as a function of learning. The

parietal cortex is assumed to be a core structure for attention-

based selection and representation of spatial features (Gottlieb,

2002). In addition, the right lingual gyrus was activated in the

invariant learning condition. Similar to the IPL, this region has

been associated with attentional feature processing (Hopfinger

et al., 2000). In light of these findings, we assume that the IPL is

involved in the allocation of attention to upcoming positions

and in maintaining an attentional set (Corbetta and Shulman,

2002) across trials and by this supports the extraction of spatial

regularities. During the time-course of experimental blocks,

attentional maintenance requirements get reduced as reflected

in a decrease of IPL activity.

To summarize, the present results point to a dynamic in-

terplay between medial temporal, striatal and lateral prefrontal

brain regions during the formation of invariant memories.

During initial trials, the right hippocampus is involved, since

unique object--position conjunctions require hippocampal
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relational binding processes. After regularities are extracted,

hippocampal activation decreases as a function of learning due

to the reduced relational binding requirements. In contrast,

both the lateral PFC and the ventral striatum showed a learning-

related increase of activity. However, further studies will be

required in order to examine the differential involvement of the

hippocampus, the striatum and the lateral PFC in other forms of

regularity learning.

In conclusion, these data indicate a transition of the relative

roles of distinct neural systems during the time-course of learn-

ing, i.e. learning is accompanied by a shift from a hippocampal

to a prefrontal-striatal brain system (Poldrack et al., 2001; Opitz

and Friederici, 2003).
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Poldrack RA, Clark J, Paré-Blagoev EJ, Shohamy D, Creso Moyano J, Myers

C, Gluck MA (2001) Interactive memory systems in the human brain.

Nature 414:546--550.

Prabhakaran V, Narayanan K, Gabrieli JDE (2000) Integration of diverse

information in working memory within the frontal lobe. Nat Neuro-

sci 3:85--90.

Reber PJ, Stark CEL, Squire LR (1998) Cortical areas supporting category

learning identified using functional MRI. Proc Natl Acad Sci USA

95:747--750.

Rescorla RA, Wagner AR (1972) A theory of Pavlovian conditioning: vari-

ations in the effectiveness of reinforcement and non-reinforcement.

In: Classical conditioning II. Current research and theory (Black AH,

Prokasy WF, eds), pp. 64--99. New York: Appleton-Century-Crofts.

Sakai K, Rowe JB, Passingham RE (2002) Active maintenance in pre-

frontal area 46 creates distractor-resistant memory. Nat Neurosci

5:479--484.

Schendan HE, Searl MM, Melrose RJ, Stern CE (2003) An fMRI study of

the medial temporal lobe in implicit and explicit sequence learning.

Neuron 37:1013--1025.

Schultz W (2002) Getting formal with dopamine and reward. Neuron

36:241--263.

Shanks DR, St John MF (1994) Characteristics of dissociable human

learning systems. Behav Brain Sci 17:367--447.

Shastri L (2002) Episodic memory and cortico-hippocampal interac-

tions. Trends Cogn Sci 6:162--168.

Simons JS, Spiers HJ (2003) Prefrontal and medial temporal lobe

interactions in long-term memory. Nat Rev Neurosci 4:637--648.

Smith ML, Milner B (1981) The role of the right hippocampus in the

recall of spatial location. Neuropsychologia 19:781--793.

Strange BA, Henson RNA, Friston KJ, Dolan RJ (2001) Anterior prefrontal

cortex mediates rule learning in humans. Cereb Cortex 11:

1040--1046.

Sutton RS, Barto AG (1990) Time-derivative models of Pavlovian

reinforcement. In: Learning and computational neuroscience: foun-

dations of adaptive networks (Gabriel M, Moore J, eds), pp. 497--537.

Cambridge, MA: MIT Press.

Talairach J, Tournoux P (1988) Co-planar stereotaxis atlas of the human

brain. New York: Thieme.

Toni I, Ramnani N, Josephs O, Ashburner J, Passingham RE (2001)

Learning arbitrary visuomotor associations: temporal dynamic of

brain activity. Neuroimage 14:1048--1057.

Tulving E (1983) Elements of episodic memory. Oxford: Clarendon

Press.

Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In:

Analysis of visual behavior (Ingle DJ, Goodale MA, Mansfield RJW,

eds), pp. 549--586. Cambridge, MA: MIT Press.

Waelti P, Dickinson A, Schultz W (2001) Dopamine responses comply

with basic assumptions of formal learning theory. Nature 412:43--48.

Wagner AD (2002) Cognitive control and episodic memory: contribu-

tions from prefrontal cortex. In: Neuropsychology of memory

(Squire LR, Schacter DL, eds), pp. 174--192. New York: Guilford

Press.

Wallis JD, Anderson KC, Miller EK (2001) Single neurons in prefrontal

cortex encode abstract rules. Nature 411:953--956.

Warner JJ (2001) Atlas of neuroanatomy. Boston, MA: Butterworth-

Heinemann.

Willingham DB, Salidis J, Gabrieli JDE (2002) Direct comparison of

neural systems mediating conscious and unconscious skill learning.

J Neurophysiol 88:1451--1460.

Wood ER, Dudchenko PA, Eichenbaum H (1999) The global record of

memory in hippocampal neuronal activity. Nature 397:613--616.

Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996) A

unified statistical approach for determining significant signals in

images of cerebral activation. Hum Brain Mapp 4:58--73.

Yeshurun Y, Carrasco M (1998) Attention improves or impairs visual

performance by enhancing spatial resolution. Nature 396:72--75.

Yonelinas AP, Kroll NEA, Quamme JR, Lazzara MM, Sauvé MJ, Widaman
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